Современные проблемы системного анализа и управления. Системный анализ

Системный анализ как методология решения проблем 1. 2. 3. 4. Сущность и назначение метода. Классификация методов Характеристика Основные этапы проведения

Место СА в научном исследовании Системность не должна казаться неким нововведением, последним достижением науки. Системность есть всеобщее свойство материи, форма ее существования, а значит, и неотъемлемое свойство человеческой практики, включая мышление. Всякая деятельность может быть менее или более системной. Появление проблемы - признак недостаточной системности; решение проблемы - результат повышения системности. Теоретическая мысль на разных уровнях абстракции отражала системность мира вообще и системность человеческого познания и практики. На философском уровне - это диалектический материализм, на общенаучном - системология и общая теория систем, теория организации; на естественно-научном - кибернетика. С развитием вычислительной техники возникли информатика и искусственный интеллект.

Место СА в научном исследовании В начале 80 -х годов стало очевидным, что все эти теоретические и прикладные дисциплины образуют как бы единый поток, «системное движение» . Системность становится не только теоретической категорией, но и осознанным аспектом практической деятельности. Поскольку большие и сложные системы по необходимости стали предметом изучения, управления и проектирования, потребовалось обобщение методов исследования систем и методов воздействия на них. Возникла некая прикладная наука, являющаяся «мостом» между абстрактными теориями системности и живой системной практикой. Сначала, в различных областях и под разными названиями, а в последующие годы сформировалась в науку, которая получила название «системный анализ» .

Системный подход представляет собой совокупность методов и средств, позволяющих исследовать свойства, структуру и функции объектов и процессов в целом, представив их в качестве систем со сложными межэлементными взаимосвязями, взаимовлиянием самой системы на ее структурные элементы. Системный подход заключается в рассмотрении элементов системы как взаимосвязанных и взаимодействующих для достижения глобальной цели функционирования системы.

Основные преимущества системного подхода Высвечивается то общее в различных объектах и процессах, что затеняется различными деталями и трудно обнаруживается, пока не отброшены частности. Методы принятия решений переносятся из одних функциональных областей в другие; Не допускается переоценка возможностей отдельных методов принятии решений, например, только математического моделирования в ущерб экспертным оценкам; Осуществляется синтез знаний из различных наук.

Принципы системного подхода: Единства – совместное рассмотрение системы как единого целого и как совокупность частей; Развития – учет изменяемости системы, ее способности к развитию, накапливанию информации с учетом динамики среды; Глобальной цели – ответственность за выбор глобальной цели, оптимум подсистем не является оптимумом всей системы; Функциональности – совместное рассмотрение структуры системы и функций; Сочетания децентрализации и централизации; Иерархии – учет соподчинения и ранжирования частей;

Сущность и назначение Курс системного анализа - типично меж- и наддисциплинарный курс, обобщающий методологию исследования сложных технических, природных и социальных систем. В результате проявления интегративной тенденции появилась новая область научной деятельности: системные исследования, которые направлены на решение комплексных крупномасштабных проблем большой сложности.

Сущность и назначение Системный анализ разрабатывает системную методологию решения сложных прикладных проблем, опираясь на принципы системного подхода и общей теории систем, развивая и методологически обобщая концептуальный (идейный) и математический аппарат кибернетики, исследования операций и системотехники. Системный анализ представляет собой новое научное направление интеграционного типа, которое разрабатывает системную методологию принятия решений и занимает важное место в структуре современных исследований.

Классификация проблем по степени их структуризации Согласно классификации, предложенной Саймоном и Ньюэллом, все множество проблем в зависимости от глубины их познания подразделяется на 3 класса: 1. хорошо структурированные или количественно выраженные проблемы, которые поддаются математической формализации и решаются с использованием формальных методов; 2. неструктурированные или качественно выраженные проблемы, которые описываются лишь на содержательном уровне и решаются с использованием неформальных процедур; 3. слабоструктурированные (смешанные проблемы), которые содержат количественные и качественные проблемы, причем качественные, малоизвестные и неопределенные стороны проблем имеют тенденцию доминирования.

Принципы решения неструктурированных проблем Для решения проблем первого класса широко используются математические методы исследования операций. Для решения проблем второго класса целесообразно использовать методы экспертных оценок. Методы экспертных оценок применяются в тех случаях, когда математическая формализация проблем либо невозможна в силу их новизны и сложности, либо требует больших затрат времени и средств. Для решения проблем третьего класса целесообразно использовать методы сист. анализа

Основные этапы и методы СА Системный анализ представляет собой многошаговый итеративный процесс, причем исходным моментом этого процесса является формулировка проблемы в некоторой первоначальной форме. При формулировке проблемы необходимо учитывать два противоречивых требования: 1. проблема должна формулироваться достаточно широко, чтобы ничего существенного не упустить; 2. проблема должна формироваться т. о. , чтобы она была обозримой и могла быть структурирована. В ходе системного анализа степень структуризации проблемы повышается, т. е. проблема формулируется все более четко и исчерпывающе.

Определения 1. Система – это обособленная часть, фрагмент мира, обладающий эмерджентностью и относительной самодостаточностью. 2. Система –это множество элементов, находящихся в отношениях и связях друг с другом и образующих целостность или органическое единство. 3. Система – совокупность элементов, находящихся в отношениях и связях друг с другом, которая образует определенную целостность, единство. С учетом общепринятых утверждений о том, что система – всегда целое, а целое указывает на связанность частей, при системном рассмотрении объекта прежде всего определяют его состав и внутренние связи. Как показывают многовековые наблюдения в системном объекте наряду с элементами имеют место более крупные составляющие – подсистемы.

ОСНОВНЫЕ СВОЙСТВА СИСТЕМЫ СИСТЕМА ЦЕЛОСТНОСТЬ СЛОЖНОСТЬ ОРГАНИЗОВАННОСТЬ Внутреннее единство объекта, система выступает и воспринимается относительно окружающей среды как нечто целое. Максимальная сосредоточенность на действии, которое в данный момент производится. Любые воздействия на систему в общем случае однозначно не определяют те процессы, которые происходят внутри системы. Преобразования, которые система претерпевает, вызываются взаимодействием внешних и внутренних факторов.

Определения Организованность, взаимосвязанность и целостность рассматривают в качестве основных свойств систем многочисленные определения, встречающиеся в современной науке. Понятие системы - это способ найти простое в сложном в целях упрощения анализа. Системные свойства Эмерджентность – свойство систем, обусловливающее появление новых свойств и качеств, не присущих элементам, входящих в состав системы. Целостность системы означает, что каждый элемент системы вносит вклад в реализацию целевой функции системы.

Системные свойства Организованность – сложное свойство систем, заключающиеся в наличии структуры и функционирования (поведения). Функциональность – это проявление определенных свойств (функций) при взаимодействии с внешней средой. Структурность – это упорядоченность системы, определенный набор и расположение элементов со связями между ними. Свойство роста (развития). Фундаментальным свойством систем является устойчивость. Надежность – свойство сохранения структуры систем. Адаптируемость – свойство изменять поведение или структуру с целью сохранения, улучшения или приобретение новых качеств в условиях изменения внешней среды.

Определения Подсистема – относительно самостоятельная составляющая изучаемой системы, которая, в свою очередь, рассматривается как система. Элемент (от лат. elementum – первоначальное вещество) – составляющая изучаемой системы, рассматриваемая как неделимая вследствие несущественного влияния ее внутренних взаимосвязей и взаимодействий на свойства системы. Для подсистемы и элемента используют общий термин «компонент» . Окружающая среда (далее среда) – это совокупность объектов, не вошедших в исследуемую систему, но оказывающих на нее влияние и/или подверженных влиянию со стороны системы.

Определения Качество – свойство объекта, означающее его пригодность для использования по тому или другому назначению. Отношения здесь рассматриваются в общепринятом смысле, а связь как n- арное отношение (n ≥ 2, где n – объекты, на которых оно определено), характеризующееся наличием физического обменного канала между n объектами. Связи классифицируют по физической природе, мощности, направленности, наличию элементов-посредников.

Классификация связей По ф и з и ч е с к о й п р и р о д е различают вещественные, энергетические, информационные, а также другие, в том числе смешанные связи. По м о щ н о с т и связей различают сильную и слабую связанность. Под мощностью связей обычно понимается их число. По н а п р а в л е н н о с т и различают направленные и ненаправленные (нейтральные) связи, а среди направленных – прямые, направленные от входа к выходу системы (и от начальной к конечным вершинам базовой структуры системы), и обратные, имеющие противоположное направление.

Определения Целостность системного объекта имеет два смысловых аспекта: -обособленность от окружающей среды; -определенность строения. Единство системного объекта имеет следующие смысловые аспекты: системы и окружающей среды; компонентов системы, ее взаимоисключающих сторон.

Определения Для распознавания систем используются системные признаки, а для описания – характеристики систем. Признак – свойство (или совокупность свойств), по которому осуществляют классификацию или идентификацию объектов либо определяют их состояние. В качестве признаков системного объекта будем использовать: членимость, связанность; целостность, единство; эмерджентность. Характеристика – существенное отличительное свойство объекта.

Эмерджентность означает несводимость свойств/закономерностей системы к свойствам/закономерностям ее компонентов и невыводимость системных свойств/ закономерностей из свойств/ закономерностей компонентов. Данный признак отличает системные объекты от несистемных, таких как стакан воды или мешок картофеля, между частями которых нет устойчивых и сильных (структурных) связей (не обладают эмерджентными свойствами).

Характеристики системы Основными характеристиками системы являются: состав компонентов; структуры и организация; свойства; состояние и поведение. Изучение, создание и изменение, а также управление любой системой (даже природной) различными лицами осуществляются по-разному в силу сложности систем, непредсказуемости их поведения и многих других факторов.

Системный анализ 1. системные исследования 2. системный подход 3. конкретные системные концепции 4. общая теория систем (метатеория) 5. диалектический материализм (философские проблемы системных исследований) 6. научные системные теории и модели (учение о биосфере земли; теория вероятностей; кибернетика и др.) 7. технические системные теории и разработки - исследование операций; системотехника, системный анализ и др. 8. частные теории системы.

Область применения СА Проблемы, решаемые с помощью системного анализа, имеют ряд характерных особенностей: принимаемое решение относится к будущему (завод, которого пока нет) имеется широкий диапазон альтернатив решения зависят от текущей неполноты технологических достижений принимаемые решения требуют больших вложений ресурсов и содержат элементы риска не полностью определены требования, относящиеся к стоимости и времени решения проблемы проблема внутренне сложна вследствие того, что для ее решения необходимо комбинирование различных ресурсов.

Основные положения концепции системного анализа 1. Процесс решения проблемы должен начинаться с выявления и обоснования конечной цели, которой хотят достичь в той или иной области и уже на этом основании определяются промежуточные цели и задачи. 2. К любой проблеме необходимо подходить, как к сложной системе, выявляя при этом все возможные подпроблемы и взаимосвязи, а также последствия тех или иных решений 3. В процессе решения проблемы осуществляется формирование множества альтернатив достижения цели; оценка этих альтернатив с помощью соответствующих критериев и выбор предпочтительной альтернативы. 4. Организационная структура механизма решения проблемы должна подчиняться цели или ряду целей, а не наоборот.

Основные этапы и методы СА СА предусматривает разработку системного метода решения проблемы, т. е. логически и процедурно организованную последовательность операций, направленных на выбор предпочтительной альтернативы решения. СА реализуется практически в несколько этапов, однако в отношении их числа и содержания пока еще нет единства, т. к. существует большое разнообразие прикладных проблем.

Основные этапы системного анализа По Ф. Хансману ФРГ, 1978 год По Д. Джеферсу США, 1981 год По В. В. Дружинину СССР, 1988 год 1. Общая ориентация в проблеме (эскизная постановка проблемы) 1. Выделение проблемы 2. Выбор соответствующих 1. Выбор проблемы критериев 2. Описание 3. Формирование альтернативных решений 2. Постановка задачи и ограничение степени ее сложности 3. Установление критериев 4. Выделение существенных факторов внешней среды 3. Установление иерархии, 4. Идеализация целей и задач (предельное упрощение, попытка построения модели)

Основные этапы системного анализа По Ф. Хансману ФРГ, 1978 год По Д. Джеферсу США, 1981 год По В. В. Дружинину СССР, 1988 год 5. Построение модели и ее проверка 5. Моделирование 5. Декомпозиция (разбивка и нахождение решений по частям) 6. Оценка и прогноз параметров модели 6. Оценка возможных стратегий 6. Композиция («склеивание» частей вместе) 7. Получение информации 7. Внедрение результатов 7. Принятие наилучшего на основе модели решения 8. Подготовка к выбору решения 9. Реализация и контроль

В научный инструментарий СА входят следующие методы: метод сценариев (попытка дать описание системы) метод дерева целей (т. е. декомпозиция до задач, которые можно решить) метод морфологического анализа (для изобретений) методы экспертных оценок вероятностно-статистические методы (теория МО, игр и т. д.) кибернетические методы (объект в виде черного ящика) методы ИО (скалярная opt) методы векторной оптимизации методы имитационного моделирования (например, GPSS) сетевые методы матричные методы методы экономического анализа и др.

Место СА в научном исследовании В процессе СА на разных его уровнях применяются различные методы, в которых эвристика сочетается с формализацией. СА выполняет роль методологического каркаса, объединяющего все необходимые методы, исследовательские приемы, мероприятия и ресурсы для решения проблем. Современный системный анализ является прикладной наукой, нацеленной на выяснение причин реальных сложностей, возникших перед «обладателем проблемы» и на выработку вариантов их устранения.

Место СА в научном исследовании Особенности современного системного анализа вытекают из самой природы сложных систем. Имея в качестве цели ликвидацию проблемы или, как минимум, выяснение ее причин, системный анализ привлекает для этого широкий спектр средств, использует возможности различных наук и практических сфер деятельности. Являясь по существу прикладной диалектикой, системный анализ придает большое значение методологическим аспектам любого системного исследования. С другой стороны, прикладная направленность системного анализа приводит к использованию всех современных средств научных исследований - математики, вычислительной техники, моделирования, натурных наблюдений и экспериментов.

Очевидные признаки системности структурированность системы; взаимосвязанность составляющих ее частей; подчиненность организации всей системы определенной цели. Системность практической деятельности Всякое наше осознанное действие преследует вполне определенную цель; во всяком действии легко увидеть его составные части, которые выполняются в определенной последовательности. Системность познавательной деятельности Одна из особенностей познания - наличие аналитического и синтетического образов мышления. Суть анализа состоит в разделении целого на части, в представлении сложного в виде совокупности более простых компонент. Но чтобы познать целое, сложное, необходим и обратный процесс - синтез. Это относится не только к индивидуальному мышлению, но и к общечеловеческому знанию. Скажем так, расчлененность мышления на анализ и синтез и взаимосвязанность этих частей являются важнейшим признаком системности познания. Системность нашего мышления вытекает из системности мира. Современные научные данные и современные системные представления позволяют говорить о мире как о бесконечной иерархической системе систем, находящихся в развитии и на разных стадиях развития, на разных уровнях системной иерархии.

Области применения системного анализа На общегосударст венном уровне при разработке Комплексные программы нучно технического прогресса Основные направления экономического и социального развития Целевые комплексные программы Совершенствован ие структур экономики На уровне отрасли при разработке Прогнозы развития отрасли Отраслевые основные направления развития Отраслевые краткосрочные планы Отраслевые комплексные программы Совершенствов ание структуры отрасли и системы управления Отраслевые программы информатизации На уровне регионов при разработке Комплексные программы развития региона Основные направления развития региона Планы регионов на краткосрочную перспективу Межотраслевые региональные комплексные программы Структуры управления в регионе Региональные программы информатизации На уровне предприятий при разработке Концепции развития предприятия Основные направления деятельности предприятий Годовые производственные планы При организации оперативного управления производством Производственная и организационная структуры предприятия Информационные системы управления производством

Задание 1. Провести классификацию системы с учетом основных классификационных признаков. Объект - КГТУ Признак классификации По степени организованности По взаимодействию с внешней средой По структуре По характеру связи между элементами По характеру функций По характеру развития По степени организованности По сложности поведения По назначению Класс объекта по признаку Хорошо организованная Обоснование Действует по установленным законам

Исследование проблемы

Что же такое «проблема» и как необходимо ее решать?

Человек в процессе своей практической деятельности постоянно взаимодействует с внешней средой. Это взаимодействие носит пассивный и активный характер и выражается:

· В познании среды;

· В адаптации к среде;

· В воздействии на среду;

· В управлении средой.

Состояние системы и окружающей ее среды на какой-то момент или отрезок времени называется ситуацией . В качестве модели ситуации можно рассматривать определенное сочетание свойств системы и среды, которые можно охарактеризовать совокупностью контролируемых переменных (показателей).

В том случае, когда значения этих показателей (выраженных в некоторых шкалах, желательно в сильных) находятся в допустимых по какому-то критерию пределах, ситуация оценивается как благоприятная. В противном случае можно говорить о неблагоприятной ситуации. Такая ситуация часто называется проблемной.

Проблемная ситуация – это такое состояние системы и среды, при котором неудовлетворенность существующим положением осознана определенным лицом, но не ясно, что следует предпринять для ее изменения. Такая ситуация порождает проблему.

Неудовлетворенность ситуацией носит двойственный характер. С одной стороны, это отрицательное отношение к тому, что имеет место, и, по мнению конкретного лица(группы лиц или организации), не имеет право на дальнейшее существование. Так возникают проблемы борьбы с загрязнением окружающей среды, эпидемиями или таким негативным социальным явлением как безработица. Проблемы подобного типа иногда называют негативными .

Проблемы другого типа возникают, когда неудовлетворенность ситуацией основывается на стремлении человека получить нечто желаемое, то, что еще не существует, но, по его мнению, должно быть. Эти проблемы можно назвать позитивными . К таким проблемам относятся проблемы экономического и политического развития государства, развития науки и техники, совершенствования системы здравоохранения, изменения социального статуса научного работника и т.п. Эти проблемы возникают, когда стремятся изменить существующую реальность под некоторую прагматическую (нормативную) модель, которая адекватно отражает желаемую ситуацию.

Системный подход к понятию «проблема» отражен в приведенных ниже формулировках, отличающихся различным уровнем формализации и дающих возможность взглянуть на проблему с разных точек зрения.

1. Проблема (гр. Problema – задача) – это сложный теоретический или практический вопрос, требующий изучения и решения.

2. Проблема – это осознание субъектом невозможности разрешить трудности и противоречия, возникающие в данной ситуации, средствами наличного знания и опыта. Проблема осознается как такая противоречивая ситуация, в которой имеют место противоположные позиции при объяснении одних и тех же объектов, явлений и процессов или отношений между ними.

3. Проблема – это неблагополучное положение в какой-либо области человеческой деятельности, т.е. расхождение между требуемым(ожидаемым, желаемым) и фактическим состоянием системы или результатами ее функционирования.

4. Проблема – это осознание одним человеком или группой людей неудовлетворенностей в отношениях к состоянию некоторой системы и окружающей ее среды. Эти неудовлетворенности могут проявляться в трех основных формах:

· Неудовлетворенности от воздействия внешней среды на систему (неудовлетворенности по входу системы);

· Неудовлетворенности от воздействия системы на внешнюю среду (неудовлетворенности по выходу системы);

· Неудовлетворенности внутренним состоянием системы (неудовлетворенности по элементному составу, структуре, функциям, процессам и т.д.).

Этап осознания проблемы как некоторой иерархии неудовлетворенностей должен

заканчиваться формулировкой проблемы, т.е. вербальной моделью проблемы.

При формулировке проблемы полезно предварительно получить ответы на следующие системные вопросы.

1. Кто (конкретное лицо, организация или другой системный объект) неудовлетворен существующей ситуацией?

2. Что именно не удовлетворяет, и каковы иерархическая структура и ранжированная значимость этих неудовлетворенностей?

3. В какой среде осознается эта неудовлетворенность? Что представляет собой эта среда (какой ее состав и структура, какие процессы в ней протекают и какие релевантные факторы определяют ситуационное состояние среды)?

4. Как констатируемые неудовлетворенности соотносятся с общепринятой в данной культурной среде системой ценностей и с системой ценностей лица, формулирующего проблему?

5. Каковы пространственные и временные границы распространения этих неудовлетворенностей?

6. Выявлены ли эти неудовлетворенности в результате системного анализа или являются быстрой реакцией на какую-то ситуацию, т.е. каково соотношение объективного и субъективного при формулировке неудовлетворенностей?

7. Каковы возможные последствия сложившейся ситуации, если не принимать меры по ее нормализации?

На пути построения модели проблемы как объекта системного анализа существует много серьезных сложностей, некоторые из которых будут рассмотрены ниже.

Как уже отмечалось, проблема зарождается в недрах некоторой системы, которую в системном анализе называют проблемосодержащей системой (ПС - системой), в отличие от системы, которая эту проблему будет решать и которую называют проблеморазрешающей системой (ПР - системой).

В соответствии с системной методологией любая проблемосодержащая система является подсистемой системы более высокого иерархического уровня, называемой метасистемой, которая включает множество различных связанных между собой системных объектов.

Естественно, что все эти системы в той или иной мере взаимодействуют с рассматриваемой ПС - системой и число этих взаимодействий велико и разнообразно.

Системный аналитик подходит к исследованию проблемы с несколькими допущениями.

1. Проблемы взаимосвязаны и к их решению следует подходить холистически (гр – холизм. – философия целостности).

2. Проблемы не существуют сами по себе, а являются отражением суждения субъекта анализа о его взаимодействии с окружающей средой. Другими словами, проблемы, по существу, носят субъективный характер, т.к. они зависят от субъективных интерпретаций тех, кто их определяет.

3. Проблемы динамичны, во-первых, потому, что может быть столько формулировок проблем, сколько независимых субъектов занимаются ее анализом, а во-вторых, воздействует фактор времени и изменяется сама среда, в которой проблема зародилась, т.е. изменяется проблемосодержащая система.

Таким образом, основное предположение системного аналитика состоит в том, что проблема концептуально плохо структурирована. И это тем более верно, чем более тщательно и разносторонне изучается проблемная ситуация.

Очень хорошо эту мысль выразил писатель-фантаст П. Андерсон, сказав, что «проблема, сколь бы сложной она ни была, станет еще сложнее, если на нее правильно посмотреть ».

Различают структурную и неструктурную сложности.

Структурная сложность определяется большим числом элементов системы и связей между ними (например, структура такой системы как атомная электростанция, ракетный комплекс, спутниковая навигационная система и т.п.).

Неструктурная сложность определяется качеством отношения между объектом и субъектом исследования (например, оценка состояния экономического и социально-психологического состояния общества, экологическая обстановка в регионе и т.п.).

Основное различие этих сложностей в том, что в первом случае приходится иметь дело хотя и с большим числом свойств и параметров, но которые выражаются в сильных квалиметрических шкалах (их можно измерить количественно), а во втором случае – эти свойства слабоструктурированы и либо вообще пока не измеримы, либо измеримы в слабых шкалах (шкалы наименований или порядка).

Различают также объективную и субъективную сложности системных объектов.

Объективная сложность связана с сущностными свойствами анализируемого системного объекта, а субъективная сложность определяется особенностями субъекта анализа проблемы.

Формулировка проблемы должна в доступной форме попытаться ответить на следующий комплексный вопрос:

Какие факторы, под воздействием каких сил и обстоятельств, управляемые какими людьми или организациям, преследующими какие цели, приводят к ситуации, которую определенные субъекты деятельности воспринимают (классифицируют) как неудовлетворенность определенной степени, т.е. как проблему.

Полученная таким образом новая версия вербальной модели проблемы в обязательном порядке согласовывается с заказчиком или лицом, принимающим решение (ЛПР) по ликвидации или локализации проблемы.


1 | | | | | | |

Проблема

Проблема

Проблемами стабилизации управление производством.

По степени формализации

По характеру проявления

По степени связности

Первый уровень -

Второй уровень -

Третий уровень -

Четвертый уровень -

Количественные проблемы

Качественные проблемы

Определение проблемной ситуации

Проблемная ситуация - условия, порождающие проблему.

Условия постановки проблемы - объективно возникающие противоречия в тех или иных действиях и незнание способов их выполнения; противоречия между потребностями в новых знаниях и их недостаточностью.

Проблемные ситуации возникают в процессе познавательной деятельности субъекта, направленной на некий объект, когда субъект встречает какое-то затруднение, преграду.

Преграда может быть самой различной природы: это и недостаток или несоответствие знаний, средств и способов их применения, и необходимость произвести какие-то неизвестные действия для достижения цели или сделать выбор между несколькими объектами и т.п. Во всех этих случаях возникает ситуация, которую принято называть проблемной.

Проблемная ситуация - это «разрыв» в деятельности, «рассогласование между целями и возможностями субъекта, т.е. наличие условии, порождающих проблему.

Типичными проблемными ситуациями являются:

Результаты деятельности не соответствуют желанным целям;

Ранее выработанные, теоретически обоснованные и практически проверенные методы решения не дают должного эффекта или не могут быть использованы;

В ходе практической деятельности обнаруживаются новые факты, которые не укладываются в рамки существующих теоретических представлений;

Одна из частных теорий вступает в противоречие с более общей теорией или другими областями жизни в пределах данной отрасли знаний.

Цель формулирования проблемы состоит в том, чтобы установить сущность проблемы в известных терминах.

Успешное формулирование проблемы может быть равносильно «половине» решения проблемы. Однако «наполовину решенная» в результате формулирования проблема не есть действительно решенная проблема, но ее формулирование означает, что основные ее элементы надлежащим образом определены и связаны.

При формулировании (постановке) проблемы должны быть выполнены следующие действия:

Во-первых, необходимо описать, каким образом проблема была обнаружена;

Во-вторых, установить, почему она рассматривается как проблема;

В-третьих, отличить ее от «симптома» некоторых смежных проблем;

В-четвертых, дать операционные определения нежелательных последствий проблемы.

Постановка целей решения

После того как сформулирована проблема, которую требуется преодолеть в ходе выполнения системного анализа, переходят к определению цели.

Определить цель системного анализа - это значит ответить на вопрос, что надо сделать для снятия проблемы. Сформулировать цель - значит указать направление, в котором следует двигаться, чтобы разрешить существующую проблему, показать пути, которые уводят от существующей проблемной ситуации.

При формировании целей системы необходимо выполнять следующие условия:

Совокупность всех частных целей системы (ее подцелей) должна быть выражена единой главной целью и формализована в виде целевой функции, чтобы служить критерием для сравнения вариантов решения проблемы;

Главная цель системы состоит в обеспечении наиболее эффективного ее функционирования. Под этим понимается наилучший компромисс между степенями достижения разных подцелей, определяемый на основании взаимного соизмерения полезности конечных результатов и их сопоставления с затратами ресурсов всех видов на получение всех результатов;

Цель решения отдельной проблемы является частным выражением цели системы, учитывающим лишь те подцели, на степень достижения которых может повлиять решение данной проблемы;

Цель решения проблемы формулируется с учетом конкретных условий, в которых выбирается и реализуется решение. Эти условия задаются системой ограничений.

Цель и условия решения проблемы должны быть определены и формализованы уже на первом этапе ее проработки. Этот этап предусматривает следующие основные процедуры:

1. Выявление и систематизация подцелей системы, выбор показателей (аргументов целевой функции), количественно характеризующих достижение подцелей.

2. Уточнение условий решения проблемы и формирование ограничений, уточнение состава варьируемых аргументов целевой функции с учетом принятых ограничений.

3. Формирование целевой функции, т.е. конкретизация ее зависимости от аргументов на основе соизмерения подцелей.

Исследование целей заинтересованных в проблеме лиц должно предусматривать также возможность их уточнения, расширения или даже замены. Это обстоятельство является основной причиной итеративности системного анализа.

Построение и выбор критерия

Критерий - это способ сравнения альтернатив. Необходимо различать понятия критерий и критериальная функция. Критерием качества альтернативы может служить любой ее признак, значение которого можно зафиксировать в порядковой или более сильной шкале. После того как критерий сформирован, т.е. найдена характеристика, которая будет положена в основу сравнения альтернатив, появляется возможность ставить задачи выбора и оптимизации.

Задача формирования критериев решается непосредственно после того, как сформулированы цели системного анализа. Ситуация становится понятной, если к критериям относиться как к количественным моделям качественных целей. Задача системного аналитика состоит в том, чтобы формализовать проблемную ситуацию, возникающую в ходе системного анализа. Этой цели как раз и служит этап формирования критериев.

При решении задач системного анализа возникает ситуация, когда невозможно предложить один критерий, адекватно отражающий цель исследования: даже одну цель редко удается выразить одним критерием, хотя к этому необходимо стремиться. Критерий, как и всякая модель, лишь приближенно отображает цель; адекватность одного критерия может оказаться недостаточной. Поэтому решение может состоять не обязательно в поиске более адекватного критерия, оно может выражаться в использовании нескольких критериев, описывающих одну цель по-разному и дополняющих друг друга.

При постановке и решении задач системного анализа необходимо учитывать не только цели, на решение которых он направлен, но и возможности, которыми обладают стороны для решения поставленных задач и которые позволяют снять выявленные проблемы. В первую очередь необходимо учитывать: ресурсы, которые заказчик согласен выделить системным аналитикам для решения поставленной задачи; ресурсы исполнителя - людские ресурсы, ресурсы вычислительные, материальные ресурсы, требуемые для решения задач; временные ресурсы (сроки решения задач системного анализа, как правило, оговариваются).

При формулировке задачи системного анализа необходимо также учитывать интересы окружающей среды. Хоть окружающая среда и играет пассивную роль, необходимо учитывать, что любая система существует внутри нее, взаимодействует с ней. Поэтому при постановке задачи системного анализа необходимо следовать принципу не навредить, не предпринимать ничего, что противоречило бы законам природы. Чтобы удовлетворить условиям непревышения количества имеющихся ресурсов, в постановку задачи системного анализа вводят ограничения.

В настоящее время к основным критериям, которые наиболее часто встречаются в анализе сложных систем, можно отнести следующие:

Экономические критерии - прибыль, рентабельность, себестоимость.

Технико-экономические - производительность, надежность, долговечность.

Технологические - выход продукта, характеристики качества и пр.

МЕТОДЫ СИСТЕМНОГО АНАЛИЗА

Метод экспертных оценок

Экспертные оценки - группа методов, наиболее часто используемая в практике оценивания сложных систем на качественном уровне. Термин «эксперт» происходит от латинского слова expert, означающий «опытный».

Основой этих методов являются различные формы экспертного опроса с последующим оцениванием и выбором наиболее предпочтительного варианта.

При использовании экспертных оценок обычно предполагается, что мнение группы экспертов надежнее, чем мнение отдельного эксперта.

Все множество проблем, решаемых методами экспертных оценок, делится на два класса.

1) Проблемы, в отношении которых имеется достаточное обеспечение информацией. При этом методы опроса и обработки основываются на использовании принципа «хорошего измерителя», т.е. эксперт - источник достоверной информации, а групповое мнение экспертов близко к истинному решению.

2) Проблемы, в отношении которых знаний для уверенности и справедливости указанных гипотез недостаточно. В этом случае экспертов нельзя рассматривать как «хороших измерителей» и необходимо осторожно подходить к обработке результатов экспертизы.

К наиболее употребительным процедурам экспертных измерений относятся: ранжирование; парное сравнение; множественные сравнения; непосредственная оценка; последовательное сравнение; метод Терстоуна; метод фон Неймана-Моргенштерна.

Ранжирование

Метод ранжирования представляет собой процедуру упорядочения объектов. На основе знаний и опыта эксперт располагает объекты в порядке предпочтения, руководствуясь одним или несколькими выбранными показателями сравнения. В зависимости от вида отношений между объектами возможны различные варианты упорядочения объектов.

Парное сравнивание

Метод парного сравнения - представляет собой процедуру установления предпочтения объектов при сравнении всех возможных пар. В отличие от ранжирования, в котором осуществляется упорядочение всех объектов, парное сравнение является более простой задачей. При сравнении пары объектов возможно либо отношение строгого порядка, либо отношение эквивалентности. Отсюда следует, что парное сравнение так же, как и ранжирование, есть измерение в порядковой шкале.

Множественные сравнения

Метод множественного сравнения отличается от парного тем, что экспертам последовательно предъявляются не пары, а тройки, четверки, ... n-ки (n < N) объектов. Эксперт их упорядочивает по важности или разбивает на классы в зависимости от целей экспертизы.

Множественные сравнения занимают промежуточное положение между парными сравнениями и ранжированием. С одной стороны, они позволяют использовать больший, чем при парных сравнениях, объем информации для определения экспертного суждения в результате одновременного соотнесения объекта не с одним, а с большим числом объектов. С другой стороны, при ранжировании Объектов их может оказаться слишком много, что затрудняет работу эксперта и сказывается на качестве результатов экспертизы. В этом случае множественные сравнения позволяют уменьшить до разумных пределов объем поступающей к эксперту информации.

Непосредственная оценка

Метод непосредственной оценки заключается в присваивании объектам числовых значений в шкале интервалов. Эксперту необходимо поставить в соответствие каждому объекту точку на определенном отрезке числовой оси. При этом необходимо, чтобы эквивалентным объектам приписывались одинаковые числа.

Метод Черчмена-Акоффа (последовательное сравнение)

Этот метод относится к числу наиболее популярных при оценке альтернатив. В нем предполагается последовательная корректировка оценок, указанных экспертами.

Метод Черчмена-Акоффа является одним из самых эффективных. Его можно успешно использовать при измерениях в шкале отношений. В этом случае определяется наиболее предпочтительная альтернатива a ij . Ей присваивается максимальная оценка. Для всех остальных альтернатив эксперт указывает, во сколько раз они менее предпочтительны, чем a ij .Для корректировки численных оценок альтернатив можно использовать как стандартную процедуру метода Черчмена-Акоффа, так и попарное сравнение предпочтительности альтернатив. Если численные оценки альтернатив не совпадают с представлением эксперта об их предпочтительности, производится корректировка.

Метод фон Неймана-Моргенштерна

Этот метод заключается в получении численных оценок альтернатив с помощью так называемых вероятностных смесей. В основе метода лежит предположение, согласно которому эксперт для любой альтернативы a j , менее предпочтительной, чем a i , но более предпочтительной, чем а l может указать число р (0 ≤ р ≤ 1) такое, что альтернатива a j эквивалентна смешанной альтернативе (вероятностной смеси) . Смешанная альтернатива состоит в том, что альтернатива a i , выбирается с вероятностью Р, а альтернатива а l - с вероятностью 1-Р. Очевидно, что если Р достаточно близко к 1, то альтернатива a j менее предпочтительна, чем смешанная альтернатива .

Рассмотренные выше методы экспертных оценок обладают различными качествами, но приводят в общем случае к близким результатам. Практика применения этих методов показала, что наиболее эффективно комплексное применение различных методов для решения одной и той же задачи. Сравнительный анализ результатов повышает обоснованность делаемых выводов. При этом следует учитывать, что методом, требующим минимальных затрат, является ранжирование, а наиболее трудоемким метод последовательного сравнения (Черчмена-Акоффа). Метод парного сравнения без дополнительной обработки не дает полного упорядочения объектов.

Методы типа Дельфи

В отличие от традиционных методов экспертной оценки метод Дельфи предполагает полный отказ от коллективных обсуждений. Это делается для того, чтобы уменьшить влияние таких психологических факторов, как присоединение к мнению наиболее авторитетного специалиста, нежелание отказаться от публично выраженного мнения, следования за мнением большинства.

В методе Дельфи прямые дебаты заменены программой последовательных индивидуальных опросов, проводимых в форме анкетирования. Ответы обобщаются и вместе с новой дополнительной информацией поступают в распоряжение экспертов, после чего они уточняют свои первоначальные ответы. Такая процедура повторяется несколько раз до достижения приемлемой сходимости совокупности высказанных мнений. Результаты эксперимента показали приемлемую сходимость оценок экспертов после пяти туров опроса.

Первоначально метод Дельфи был предложен как одна из процедур при проведении «мозговой атаки» и должен был помочь снизить степень влияния психологических факторов и повысить объективность оценок экспертов. Затем метод стал использоваться самостоятельно. Его основа - обратная связь, ознакомление экспертов с результатами предшествующего этапа и учет этих результатов при оценке значимости экспертами.

Метод Дельфи, в отличие от метода сценариев, предполагает предварительное ознакомление экспертов с ситуацией с помощью какой-либо модели. Процедура Дельфи - метода заключается в следующем:

Осуществляется поиск экспертов;

Каждому эксперту предлагается один и тот же вопрос;

Каждый эксперт вырабатывает свой оценки независимо от других экспертов;

Ответы собираются и статистически усредняются;

Экспертам, ответы которых сильно отклоняются от средних значений, предлагается обосновать свои оценки;

Эксперты разрабатывают обоснования и выносят их на рассмотрение;

Среднее значение и соответствующие обоснования предъявляются всем экспертам.

Недостатки метода Дельфи:

Значительный расход времени на проведение экспертизы, связанный с большим количеством последовательных повторений оценок;

Необходимость неоднократного пересмотра экспертом своих ответов, вызывающая у него отрицательную реакцию, что сказывается на результатах экспертизы.

Область практического применения метода Дельфи расширилась, однако присущие ему ограничения привели к возникновению других методов, использующих экспертные оценки. Среди них особого внимания заслуживают методы QUEST (Qualitative Utility Estimates for Science and Technology - количественные оценки полезности науки и техники) и SEER (System for Event Evaluation and Review - система оценок и обзора событий).

В основу метода QUEST положена идея распределения ресурсов на основе учета возможного вклада (определяемого методами экспертной оценки) различных отраслей и научных направлений в решение какого-либо круга задач.

Метод SEER предусматривает всего два тура оценки. В каждом туре привлекается различный состав экспертов. Эксперты первого тура - специалисты промышленности, эксперты второго тура - наиболее квалифицированные специалисты из органов, принимающих решения, и специалисты из области естественных и технических наук. Эксперт каждого тура не возвращается к рассмотрению своих ответов за исключением тех случаев, когда его ответ выпадает из некоторого интервала, в котором находится большинство оценок.

Морфологические методы

Основная идея морфологических методов - систематически находить все мыслимые варианты решения проблемы или реализации системы путем комбинирования выделенных элементов или их признаков.

Было предложено три метода морфологического исследования:

1) Метод систематического покрытия поля, основанный на выделении так называемых опорных пунктов знания в любой исследуемой области, и использовании для заполнения поля некоторых сформулированных принципов мышления.

2) Метод отрицания и конструирования, заключающийся в том, что на пути конструктивного прогресса стоят догмы (положения) и компромиссные ограничения, которые есть смысл отрицать и, следовательно, сформулировав некоторые предложения, полезно заменить их затем на противоположные и использовать при проведении анализа.

3) Метод морфологического ящика, нашедший наиболее широкое распространение. Идея этого метода состоит в том, чтобы определить все мыслимые параметры, от которых может зависеть решение проблемы, представить их в виде матриц-строк, а затем определить в этом морфологическом матрице-ящике все возможные сочетания параметров по одному из каждой строки. Полученные таким образом варианты могут снова подвергаться оценке и анализу в целях выбора наилучшего.

МЕТОД «ДЕРЕВО РЕШЕНИЙ»

Метод «дерево решений» - графоаналитический метод, основой которого являются динамическое программирование и теория статистических решений. Вначале строится вероятностный граф возможных состояний. Весь временной период разбивается на отрезки, каждый из которых связан с моментом принятия обязательных решений и с появлением случайных факторов. Затем производят объединение моментов принятия решений и возможных вариантов результативности этих решений при различных вари­антах воздействия внешней среды. Чем выше вариантность, тем больше достоверность принимаемого решения. Определив точку принятия решений по реализации возможных альтернатив, выделяют точки, где существует неопределенность, и оценивают альтернативные результаты в этих точках.

Оценив вероятности различных событий или результатов действий, затраты ресурсов и экономический эффект, получаемый в результате реализации различных стратегий, выбирают наилучшие альтернативные варианты решений. Логика анализа такова: движение от конечного состояния к начальному, последовательно выбирать оптимальное в каждой точке. Менее эффективная альтернатива отсекается и из дальнейшего рассмотрения исключается.

Основные этапы разработки или выбора УР по методу «дерево решений»:

1-й этап. Составление новой цели развития или совершенствования компании.

2-й этап. Сбор материалов о реальном состоянии дел в компании по новой цели.

3-й этап. Формулирование проблем как разность между новой целью и обобщенной ситуацией в компании.

4-й этап. Выбор или разработка критериев оценки проблемы.

5-й этап. Декомпозиция проблемы на самостоятельные составные части.

6-й этап. Поиск ресурсов и исполнителей разрешения проблем.

7-й этап. Разработка вариантов основных решений и их предполагаемой эффективности.

8-й этап. Для каждого варианта основных решений разработка вариантов детализирующих решений.

9-й этап. Для каждого варианта детализирующего решения разработка вариантов очередного набора детализирующих решений и т.д.

10-й этап. Оценка каждой ветви взаимодействующих решений на эффективность действий и возможности достижения цели.

11-й этап. Выбор наиболее приемлемых сочетаний вариантов решений.

12-й этап. Практическая реализация выбранного варианта сочетаний решений.

Виды проблем, решаемых с помощью системного анализа

Проблема - сложный теоретический или практический вопрос, требующий изучения, разрешения.

Проблема - есть ситуация несоответствия желаемого и существующего.

Проблемами стабилизации называют такие, решение которых направлено на предотвращение, устранение или компенсацию возмущений, нарушающих текущую деятельность системы. На уровне предприятия, подотрасли и отрасли решение этих проблем обозначают термином управление производством.

Проблемами развития и совершенствования систем называют такие, решение которых направлено на повышение эффективности функционирования за счет изменения характеристик объекта управления или системы управления объектом.

В качестве классификационных признаков используются степень формализации, характер проявления и степень связности проблем.

По степени формализации проблемы обычно подразделяются следующим образом:

Неструктурированные (описание на качественном уровне и решение эвристическими методами на основе опыта и интуиции);

Слабоструктурированные (качественное и количественное описание, частично формализована предметная область), для решения которых и предназначен системный подход;

Структурированные (обычно решаются методами исследования операций).

По характеру проявления проблемы обычно подразделяются на повторяющиеся, аналогичные, новые и уникальные.

По степени связности принято выделять комплексные и автономные проблемы.

Следующий вид классификации проблем связывают с уровнем проблем и их решений. Выделяют четыре уровня проблем и решений.

Первый уровень - рутинные проблемы, рутинные решения. На этом уровне руководитель ведет себя в соответствии с имеющейся программой, почти как компьютер, распознающий ситуации и поступающий заранее предсказуемым образом. На этом уровне не требуется творческого подхода, поскольку все процедуры заранее предписаны.

Второй уровень - селективные проблемы, инициативные решения. На этом уровне требуется доля инициативы и свободы. Руководитель оценивает достоинства целого круга возможных решений и старается выбрать из некоторого числа хорошо отработанных альтернативных наборов действий те, которые лучше всего подходят к данной проблеме.

Третий уровень - адаптационные проблемы, новое решение известной проблемы. На этом уровне руководитель должен выработать творческое решение, которое в определенном смысле может быть абсолютно новым. Успех руководителя зависит от его личной инициативы и способности сделать прорыв в неизвестное.

Четвертый уровень - инновационные проблемы, новое решение неизвестной проблемы. Проблемы сложные, требующие совершенно нового подхода. Наиболее современные и трудные проблемы могут потребовать для их решения создания новой отрасли науки или технологии.

Количественные проблемы - проблемы, которые выражаются в числах или в таких символах, которые в конце концов могут быть выражены в числовых оценках. Особенность таких проблем: точность, надежность решения, строгость и управляемость.

Качественные проблемы - проблемы, которые описываются качественными характеристиками, свойствами (связаны с детальным перечислением будущих или плохо определенных ресурсов и их свойств или характеристик). Проблемы, обладающие и качественными, и количественными сторонами, будут называться смешанными или количественно-качественными проблемами.

Слабоструктурированная проблема - это такая проблема, состав элементов которой и их связи известны только частично. Возможны различные ситуации, порождающие проблемы.

Обобщая различные способы классификации проблем, можно их привести к следующим трем видам:

Оперативные проблемы - это проблемы, решение которых направлено на предотвращение, устранение или компенсацию возмущений, нарушающих текущую деятельность системы. Это структурированные проблемы. Решение этих проблем связано с количественной их оценкой, наличием хорошо отработанных альтернативных наборов действий в той или другой ситуации;

Проблемы совершенствования и развития систем - это проблемы, решение которых направлено на повышение эффективности функционирования за счет изменения характеристик объекта управления или системы управления объектом, а также внедрения новых идей. Это слабоструктурированные проблемы, решение которых является объектом исследования системного анализа и синтеза;

Инновационные проблемы - это проблемы, решение которых связано с выработкой новых идей и внедрением нововведений. Это очень слабоструктурированные (или неструктурированные) проблемы. Решение этих проблем связано с порождением новых идей и применением эвристических методов на основе опыта и интуиции.

Выше уже отмечалось, что методологической основой системного анализа является системный подход, сущность которого достаточно проста: все элементы исследуемой системы и все процессы, происходящие в ней, должны рассматриваться только как одно целое, только в совокупности, только во взаимосвязи друг с другом. Локальные решения, включение в рассмотрение неполного числа факторов, локальная оптимизация на уровне отдельных элементов почти всегда приводят к неэффективному в целом, а иногда и опасному по последствиям результату. Такое видение мира обусловливает ряд принципиальных положений, которые неукоснительно должны соблюдаться в системном анализе.

Первый принцип: явление или процесс могут быть изучены только тогда, когда они рассматриваются в виде некоторой системы или ее части. Этот принцип означает необходимость рассмотрения изучаемого явления в терминах элементов системы и среды. Стратегическая задача должна заключаться в том, чтобы определить, какие элементы обеспечивают функционирование изучаемого явления, какие связи они образуют между собой, в каких условиях функционирует и развивается явление. Отдельно взятый факт не доступен для полноценного исследования.

Второй принцип - это требование рассматривать структуру любой системы в виде целостной совокупности ее элементов, нацеленность на поиск конкретных механизмов целостности, выявление достаточно полной типологии связей. В более жесткой интерпретации этот принцип понимается как запрет на рассмотрение системы как простого объединения элементов и заключается в признании того, что свойства системы не просто сумма свойств ее элементов, а нечто большее, проявляющееся в феномене целостности, интегративности. Тем самым постулируется возможность того, что система обладает особыми свойствами, которых может и не быть у составляющих ее элементов. Этот принцип основывается на том положении, что никаких свойств целостности, не являющихся свойствами образующих ее элементов или их функций, не существует, хотя целое не есть простая сумма всех элементов.

Этот принцип утверждает возможность вывода всех свойств системы из свойств ее элементов и их взаимодействий. Иначе он может быть назван принципом относительного редукционизма. Он отражает диалектику общего, особенного и единичного в каждом элементе системы. Полный набор единичных свойств, качеств, признаков и взаимосвязей делает каждый элемент системы неповторимым. Наличие особенного позволяет типологизировать совокупность элементов, т. е. объединять их в соответствующие группы, внутри которых это особенное относительно сходно, а от группы к группе - образует континуум. Познание общего выводит на закономерности функционирования и развития системы.

Весьма важным атрибутом системы является ее эффективность. Теоретически доказано, что у любой системы всегда существует функция ее ценности в виде зависимости ее эффективности (в экономических системах это стоимостные показатели в денежном или натуральном выражении) от условий и форм ее реализации и функционирования. Кроме того, эта функция ограничена, а значит, можно и нужно искать ее максимум. В необходимости определения максимума эффективности системы заключается третий принцип системного анализа.

Смысл четвертого принципа состоит в обязательном требовании рассматривать любую систему не как самодостаточную, автономную, обособленную и т. д., а в тесном взаимодействии с окружающей ее средой. Это означает обязательность рассмотрения любой системы как открытой для восприятия внешних связей или, в более общем виде, требование рассматривать анализируемую систему как часть (подсистему) некоторой более общей системы.

Перечисленные принципы предопределяют содержание пятого принципа системного анализа - возможности (а иногда и необходимости) деления данной системы на части - подсистемы. Если последние оказываются недостаточно просты для анализа, с ними поступают точно так же. Но в процессе такого деления нельзя нарушать предыдущие принципы: пока они соблюдены, деление оправдано, разрешено в том смысле, что гарантирует применимость практических методов, приемов, алгоритмов решения задач системного анализа.

Шестой принцип : система является относительно устойчивой, гомеостатической тогда, когда она функционирует на основе обмена (информационного, энергетического, ресурсного и т. д.) между управляющей и управляемой подсистемами. Наличие обратной связи - обязательное условие гомеостатического функционирования.

Седьмой принцип: управление (познание) сложной системой не будет эффективным, если управляющая (познающая) система имеет недостаточную собственную сложность. Это частный вывод из закона необходимого разнообразия.

Все изложенное позволяет уточнить понятие «система». Его можно сформулировать следующим образом: система - это целостная структура, состоящая из взаимосвязанных и взаимодействующих элементов, объединяемых в подсистемы нескольких уровней на основе достижения единой, общей для всех подсистем цели (целей) функционирования (целевой функции).

  • 1. Динамическое взаимодействие (эквифинальные системы). Это условие предопределяет принцип соответствия, из которого следует, что взаимодействие подсистем в системе по отношению к системе в целом происходит на амбивалентной основе: функционирование подсистем осуществляется в соответствии с требованиями системы, а функционирование системы происходит на основе учета специфики и возможностей подсистем. Это означает, что хотя общесистемные требования для подсистем являются приоритетными, они не должны противоречить требованиям целостности каждой подсистемы в отдельности.
  • 2. Наличие гибких перекрестных обратных связей. Это условие является следствием принципа опережающего информационного реагирования и сопровождения действий и принимаемых решений. Для динамических систем (а именно к такому классу относятся социально-экономические и социально-политические системы) это означает необходимость упреждающей коррекции принимаемых решений на основе прогнозных оценок динамики характеристик объекта управления. Смысл этого принципа заключается в том, что прямые управленческие действия необходимо предварять вспомогательными, содержательная направленность которых должна содействовать развитию процессов, способствующих достижению поставленных целей, и демпфировать те процессы, которые этому препятствуют. В общем случае коррекции должны подвергаться определенные характеристики как объекта, так и субъекта управления. Применительно к социальной практике это означает, что любые принимаемые решения при выполнении первого принципа должны иметь упреждающее информационное сопровождение, готовящее общественное сознание к позитивному восприятию этих решений. В основе этого принципа - отличительный признак жизни, открытый П.К. Анохиным и Н.А. Бернштейном, заключающийся в ее способности к опережающему реагированию на возмущающие воздействия. При этом характер реакции организма адекватен не самому воздействию или сигналу, а событию, признаком которого они являются.
  • 3. Тенденция в развитии системы к трансформации в гомеостат У. Эшби , при котором она достигает устойчивости путем проб и ошибок. На практике это означает создание механизмов минимизации отклонений от значений целевых ориентиров развития.

Функционирование систем при таком сложном субстрате неизбежно приводит к возникновению различных проблем. Проиллюстрировать характер, существо и объективную основу проблем функционирования социальных систем можно с помощью примера, ставшего классическим.

Допустим, некоторая фирма производит определенные виды продукции и в полном соответствии с «рыночными» законами стремится получить максимальную прибыль от их продажи. Пусть решается простой вопрос: «Сколько готовой продукции необходимо хранить на складе предприятия и сколько разновидностей ее должно производиться?» Рассмотрим «частные» интересы различных отделов этой фирмы. Сразу обнаружится, что уже на внутрифирменном уровне возникают противоречия.

Теоретически каждый из отделов заинтересован в достижении общей для всех структур фирмы цели - максимуме прибыли (если это не так, то по определению данная фирма не может рассматриваться как система). Однако в реальности все обстоит несколько сложнее.

Производственный отдел будет заинтересован в длительном и непрерывном производстве одного и того же вида продукции. Только в этом случае будут наименьшими расходы на наладку оборудования.

Отдел сбыта, наоборот, будет отстаивать идею расширения номенклатуры производимой продукции и больших запасов ее на складах.

Финансовый отдел, конечно же, будет настаивать на минимуме складских запасов: то, что лежит на складе, не может приносить прибыли и, более того, сам процесс хранения требует довольно существенных непроизводительных затрат!

Даже отдел кадров будет иметь свою локальную целевую функцию - производить продукцию всегда (даже в периоды делового спада) и в одном и том же ассортименте, так как в этом случае не будет проблем текучести кадров.

Вот такие разновекторные процессы возникают в сравнительно небольшой организации, которые управленцу требуется объединить в единый, целостный механизм, функционирование которого подчиняется одной цели - достижению максимума прибыли.

Очевидно, что придется ставить и решать задачи согласования целей отдельных подсистем и хорошо еще, если показатели эффективности подсистем имеют ту же размерность, что и показатель (критерий) эффективности системы в целом. Ведь вполне может оказаться, что эффективность работы некоторых подсистем придется измерять не в денежном выражении, а с помощью других, нечисловых, показателей.

При организации полноценного функционирования социальных систем возникают и другие проблемы. Речь, в частности, идет об оценке связей между образующими систему подсистемами, а также между последними и средой.

Выше уже было отмечено, что существенным элементом любой системы являются характеристики взаимосвязей между отдельными элементами подсистем, подсистемами разных уровней и их связей с внешней средой. В силу существенного различия субстратов и функций подсистем во всякой сложной системе возникает проблема согласования, как правило, совершенно несопоставимых по размерностям показателей, приведения их к «общему знаменателю». Ведь без такого согласования невозможно устанавливать единый показатель эффективности системы в целом.

Кроме того, существует проблема определения динамических характеристик связей и взаимодействий как между подсистемами, так и их связей и взаимодействий с внешней средой. Вопрос заключается в том, как эти характеристики будут изменяться в перспективе, как эти изменения повлияют на конечный результат.

Существует давняя традиция рассматривать динамику изменения названных характеристик как случайные процессы. Соблазн такого подхода состоит в том, что для исследования случайных процессов разработан весьма разнообразный формально-аналитический аппарат. Однако социальный мир существенно детерминирован, и навязывать ему стохастическую природу только из-за того, что это открывает возможность использования огромного арсенала методов вероятностной статистики для его формализованного анализа, совершенно некорректно. Об этом необходимо помнить при возникновении проблемы анализа эмпирической информации о состоянии социально-экономических и социально-политических процессов. Позитивным выходом из данной ситуации является то, что имеется ряд сфер, в которых при определенных допущениях происходящие в них процессы можно трактовать как случайные. Это относится, главным образом, к процессам экономическим, где большинство параметров имеют массовую природу и вполне исчерпывающим образом могут отображаться количественными показателями. Предположение об их случайном происхождении хотя и искажает определенным образом их смысл, позволяет на уровне тенденций оценивать направленность и интенсивность наблюдаемых переменных. Характеристики остальных сфер социума в подавляющем большинстве имеют качественную природу. Сами эти сферы (социальная, политическая, культурная и т. п.) существенно дифференцированы, что не позволяет рассматривать их как массовые случайные процессы. Поэтому область даже не очень корректного использования методов вероятностной статистики здесь радикально сужается.

Если теперь вспомнить основное назначение системного анализа - обеспечивать лиц, принимающих решения, рекомендациями по вопросам управления системой или, по крайней мере, по совершенствованию этого управления, - то мы оказываемся перед необходимостью смягчить жесткость высказанной позиции. Придется признать, что даже самое точное следование рекомендациям науки не дает гарантии достигнуть именно того результата, который был задуман, спроектирован, запланирован. Наиболее убедительным аргументом представляется такой: все-таки лучше принимать решение (может быть, даже рискованное) при наличии хотя бы оценочной (неточной, приближенной) информации о его последствиях, чем рисковать «втемную», вообще без всяких попыток просчитать его результаты.

  • Эшби У. Введение в кибернетику. М., 1956.

Математическое описание системы и ее свойств. Внешнее и внутреннее описание систем. Задача реализации. Описание на языке теории множеств и языке состояний. Связь «вход-выход». Системы с конечным числом состояний. Выбор удобного описания. Класс автоматов. Описание на языке энтропии и потенциальных функций. Стохастические системы. Идентификация. Роль ограничений в системе. Понятие нечеткого множества и его применение для описания систем, основные операции на нечетком множестве, функция принадлежности и ее определение. Нечеткая арифметика. Нечеткие множества высшего порядка. Глобальные свойства больших систем: размерность, сложность, связность, устойчивость, непредсказуемость поведения. Структурная устойчивость систем. Катастрофы и адаптируемость систем. Типы сложности систем и способы определения. Структурная, динамическая и вычислительная сложность. Связь между структурной и динамической сложностью. Аксиомы сложности. Классификация системных задач по вычислительной сложности. Машина Тьюринга.

Методы анализа связности и сложности систем.Связность структуры больших систем. Описание связности с помощью графа. Симплексы, комплексы и многомерные связи. Эксцентриситет. Понятие гомотопии. Дыры и препятствия. Цепи и границы. Расширение понятия топологической связности. Покрытия, разбиения и иерархия. Построение разрешающих форм. Алгебраическая связность. Линейные и нелинейные системы. Полугруппы и узловые соединения. Теорема декомпозиции Крона – Роудза и ее применение. Декомпозиция аналитических систем. Структурная сложность и иерархия. Схема связности. Понятие многообразия. Уровни взаимодействия. Динамическая сложность и проблема различных шкал времени. Сложность автоматов. Эволюционная сложность. Топологическая сложность. Сложность и теория информации.

Методы анализа устойчивости и адаптивности систем.Использование внешнего и внутреннего описания для анализа устойчивости систем. Структурная устойчивость. Связная устойчивость и адаптивность. Графы и процессы распространения возмущений в системе. Устойчивость системы «черный ящик» с обратной связью. Внутренние модели и устойчивость. Бифуркация Хопфа. Структурно-устойчивые динамические системы. Теория катастроф и ее использование при решении системных задач. Типы особенностей. Катастрофа типа сборки. Устойчивость по возмущению и по начальному значению. Адаптивность динамических процессов. Адаптивность и катастрофы. Системы Морса – Смейла и адаптивность.

Проблемы управления и принятия решений.Основные задачи системного анализа в управлении. Активное и пассивное управление. Эволюционные системы. Управляемые и неуправляемые системы. Область достижимости. Особенности границы достижимости. Устойчивость управления и обратная связь. Устойчивость по Ляпунову. Управление бифуркацией. Управляемая адаптивность. Понятие об управлении сингулярными распределенными системами. Проблема оптимизации в принятии решений. Проблема выбора и сложность. Одноцелевые и многоцелевые модели принятия решений. Полезность вариантов решений. Риск и его оценка. Эвристические методы поиска решения. Применение теории нечетких множеств к решению задач оптимального выбора. Функциональный подход, основанный на введении нечеткой меры расстояния. Нечеткая классификация, нечеткая логика. Задачи оптимального управления при многих критериях. Дискретные многокритериальные задачи и задачи с непрерывным временем. Марковские модели принятия решений.

Список основной литературы

1. Романов В.Н. Техника анализа сложных систем: Учебное пособие. СПб.: Изд-во СЗТУ, 2011.

2. Романов В.Н. Основы системного анализа: Учебно-методический комплекс. СПб.: Изд-во СЗТУ, 2008.

3. Романов В.Н. Нечеткие системы. СПб.: Издательство «ЛЕМА», 2009.

Список дополнительной литературы

4. Беллман Р. Принятие решений в расплывчатых условиях / Р. Беллман, Л. Заде // Вопросы анализа и процедуры принятия решений: Сб. переводов. Под ред. И.Ф. Шахнова. М.: Мир., 1976.

5. Винер Н. Кибернетика, или управление и связь в животном и машине. М.: Наука, 1989.

6. Волкова В.Н. Теория систем и методы системного анализа в управлении и связи / В.Н. Волкова, В.А. Воронков, А.А. Денисов. М.: Радио и связь, 1983.

7. Железнов И.Г. Сложные технические системы. М.: Высшая школа, 1984.

8. Месарович М. Общая теория систем: Математические основы / М. Месарович, И. Такахара. М.: Мир, 1976.

МЕТОДИКА ПРОВЕДЕНИЯ ТЕСТИРОВАНИЯ И КРИТЕРИИ ОЦЕНКИ ОТВЕТОВ ВЫПУСКНИКОВ НА ИТОГОВОМ ГОСУДАРСТВЕННОМ ЭКЗАМЕНЕ

Согласно Положению о тестовой форме контроля знаний студентов и качества обучения Горного университета государственный экзамен проводится в форме тестирования и включает в себя 200 вопросов. Из дисциплин, входящих в первый блок, формируется 100 вопросов итогового теста (примерные тестовые задания приведены в Приложении 1). Остальные 100 вопросов формируются из дисциплин второго блока.

Экзаменационные тесты разрабатываются преподавателями, ведущими соответствующую учебную дисциплину, и сдаются за месяц до проведения итогового государственного экзамена председателю государственной экзаменационной комиссии, подписанные автором, заведующим кафедрой, экспертом из числа ведущих преподавателей кафедры. Председатель государственной экзаменационной комиссии формирует итоговый вариант теста и, после утверждения проректором по учебной работе передает его в отдел тестирования.

Тематика тестовых заданий является комплексной и соответствует избранным разделам из различных учебных циклов, формирующих конкретные компетенции: ОК1-8, ПК1-5, ПК7,ПК10, ПК12.

Тестирование проводится в соответствии с Положением о тестовой форме контроля знаний студентов и качества обучения

Результаты итогового государственного экзамена (распечатка результатов экзамена) выдаются председателю государственной экзаменационной комиссии в отделе тестирования в день экзамена и передаются на рассмотрение государственной экзаменационной комиссии.

На основании выписки из протокола заседания государственной экзаменационной комиссии по рейтинговой оценке результатов тестирования (шкалы) председатель проставляет полученные оценки в опросные карты, в экзаменационную ведомость и в зачетные книжки студентов.

Ответ выпускника на итоговом государственном экзамене определяется оценками: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно» в соответствии со шкалой, утверждаемой протоколом заседания государственной экзаменационной комиссии.

Составитель:


Приложение 1

ПРИМЕРНЫЕ ВАРИАНТЫ ТЕСТОВЫХ ЗАДАНИЙ ДЛЯ ПОДГОТОВКИ К СДАЧЕ ИТОГОВОГО ГОСУДАРСТВЕННОГО ЭКЗАМЕНА

№ п.п. Вопросы Варианты ответов
1. Прогноз, результат которого представлен в виде единственного значения характеристики объекта прогнозирования без указания доверительного интервала, называется …
2. Как называется принцип прогнозирования, требующий согласования нормативных и поисковых прогнозов различной природы и различного периода упреждения?
3. Опережающее отображение действительности, основанное на познании законов природы, общества и мышления - это … 1. ретроспекция. 2. реконструкция. 3. верификация. 4. научное предвидение. 5. интуиция.
4. С помощью равенства задается … 1. семейство линий уровня. 2. алгоритм решения задачи. 3. целевая функция. 4. MM- критерий. 5. S-критерий.
5. Как называется принцип прогнозирования, требующий взаимоувязанности и соподчиненности прогнозов объекта прогнозирования и прогнозного фона и их элементов? 1. принцип рентабельности. 2. принцип согласованности. 3. принцип системности. 4. принцип непрерывности. 5. принцип верифицируемости.
6. Прогноз, содержанием которого является определение возможных состояний объекта прогнозирования в будущем, называется … 1. поисковым. 2. нормативным. 3. интервальным. 4. точечным. 5. одномерным.

7. Информационная технология – это … 1. процедура оценки эффективности функционирования системы. 2. процесс, использующий совокупность средств и методов сбора, обработки и передачи данных для получения информации нового качества о состоянии системы, объекта, процесса или явления. 3. процедура восстановления вектора состояния системы по информации о векторе выхода. 4. процесс перевода системы из одного состояния в другое за счет воздействия некоторого управления. 5. свойство системы сохранять исправное состояние.
8. Энтропия Шеннона – это … 1. мера неопределенности. 2. метод решения задачи. 3. информационная система. 4. фактор неопределенности. 5. закон распределения.
9. Вид хранения исходных данных в среде Статграфикс? 1. графический. 2. текстовый. 3. электронная таблица. 4. кодированный. 5. программа.
10. Реализация цели прогноза путем объединения конкретных прогнозов на основе принципов прогнозирования называется … 1. прогнозирующей системой. 2. сравнением прогнозов. 3. планированием эксперимента. 4. синтезом прогнозов. 5. анализом временных рядов.
11. Какая характеристика соответствует ППП Статграфикс? 1. отсутствует импорт данных. 2. интегрированная графика. 3. не интерактивная графика. 4. отсутствие статистической консультации. 5. немодульное исполнение.
12. Оценка достоверности и точности или обоснованности прогноза – это … 1. верификация. 2. апробация. 3. декорреляция. 4. кластеризация. 5. анализ временных рядов.
13. Какой модуль позволяет решать задачу одномерного прогнозирования с помощью ППП Статграфикс? 1. описания данных. 2. планирование эксперимента. 3. сравнение данных. 4. контроль качества. 5. анализ временных рядов.

14. Метод главных компонент позволяет… 1. сравнить данные. 2. построить регрессию. 3. снизить размерность данных. 4. выбрать закон распределения. 5. увеличить размерность данных.
15. Если коэффициент парной корреляции равен 0, то связь между двумя переменными… 1. отсутствует. 2. прямо пропорциональная. 3. обратно пропорциональная. 4. нелинейная. 5. оптимальная.
16. ПАТТЕРН – это … 1. метод прогнозирования. 2. вычислительный комплекс. 3. генератор идей. 4. база данных. 5. прогнозирующая система.
17. Функции предпочтения какого критерия изображены на рисунке? 1. S-критерия. 2. G-критерия. 3. MM- критерия. 4. Критерия азартного игрока. 5. BL-критерия
18. Какой критерий определяется данным соотношением? 1. минимаксный критерий. 2. критерий Сэвиджа. 3. критерий Ходжа-Лемана. 4. критерий Гурвица. 5. критерий азартного игрока.
19. Линии уровня (функции предпочтения) в прямоугольной системе координат для критерия Гермейера задаются… 1. равнобедренными трапециями. 2. параллельными прямыми. 3. прямоугольными треугольниками. 4. прямоугольными конусами. 5. равнобедренными треугольниками.
20. Какой вид критерия существует? 1. критерий с нормалями предпочтения. 2. критерий с плоскостями предпочтения. 3. критерий с прямыми предпочтения. 4. критерий с углом предпочтения. 5. критерий с кривыми предпочтения.

21. Коэффициент влияния определяется… 1. 2. . 3. . 4. . 5. .
22. Релевантность – это… 1. выявление важности одной альтернативы относительно другой. 2. мера беспорядка системы, состоящей из многих элементов. 3. количество параметров в системе. 4. мера характеристики предмета, обозначающая его ценность. 5. мера влияния параметров на результат решения.
23. Оценочная функция определяется… 1. значениями векторов зависимых переменных. 2. значениями векторов независимых и зависимых переменных. 3. Значениями векторов независимых переменных. 4. значениями модулей векторов независимых и зависимых переменных. 5. суммой векторов независимых и зависимых переменных.
24. Энтропия – это… 1. скорость реакции на внешнее воздействие. 2. степень определённости. 3. мера неопределенности сигнала, передаваемого случайным источником. 4. увеличение мощности сигнала, передаваемого случайным источником. 5. уменьшение мощности сигнала, передаваемого случайным источником.

25. Прогностический доверительный фактор для серии из ω реализаций с учётом вероятности α ошибки определяется как… 1. . 2. . 3. . 4. . 5. .
26. Гибкий критерий выглядит… 1. . 2. . 3. . 4. . 5. .
27. К обязательным условиям, требующим выполнения для гибкого критерия решений, не относится… 1. . 2. . 3. . 4. . 5. .
28. Количество условий выполнения гибкого критерия решений… 1. 3. 2. 4. 3. 6. 4. 5. 5. 7.
Адаптивный критерий Кофлера-Менга определяется выражением… 1. . 2. . 3. . 4. . 5. .

30. К свойствам кусочно-линейной информации не относится… 1. в вероятностном подпространстве этой информации существует реальная точка экстремума, координаты которой составляют матрицу. 2. возможность оценить степень объективности этой информации. 3. на основании априорного вероятностного распределения или априорного задания частотного распределения значений параметра по интервалам можно получить апостериорное вероятностное распределение. 4. априорное распределение кусочной информации представлено в форме части этого симплекса. 5. часть симплекса образует выпуклое многомерное пространство.
31. Общая теория систем - это наука, изучающая: 1. характеристики отдельных объектов и их элементов. 2. соотношении целого и частного в системах. 3. состояние и поведение совокупностей объектов и их элементов. 4. силы связей между элементами системы. 5. характеристики объектов.
32. Системный анализ – это методология: 1. поиска решений по управлению. 2. изучения и создания объектов как единой системы. 3. проектирования приборов анализа поведения систем. 4. контроля поведения систем и их элементов. 5. изучения межэлементных связей.
33. Определите правильную формулировку понятия «система» 1. набор элементов с установленными связями. 2. совокупность объектов, объединённых для достижения поставленной цели. 3. совокупность элементов, случайно выбранных из конечного множества объектов. 4. совокупность межэлементных связей. 5. множество объектов и их связей, ограниченное общим числом элементов.
34. Выберете правильную группу задач, относятся к общей теории систем 1. анализ и прогнозирование состояния систем в заданных условиях. 2. оценка процедур системных решений. 3. разработка методов поиска информации об объекте. 4. определение структуры внешней среды. 5. определение предельных условий состояния систем.

35. Определите правильную формулировку понятия «закрытая система» 1. система, представленная в виде «чёрного ящика». 2. система с ограничениями на состояние её элементов. 3. система, элементы которой не имею связи с внешней средой. 4. система, у которой хотя бы один элемент связан с внешней средой. 5. система, у которой все элементы связаны с внешней средой.
36. Дайте определение понятия «элемент системы» 1.часть системы, показатели которой не влияют на её состояние. 2. установленная часть подсистемы, не связанная с другими элементами. 3. часть системы, не входящая ни в одну подсистему. 4. внешнее возмущение. 5. часть системы, дальнейшее разделение которой приводит к разрушению общесистемных связей.
37. Дайте правильное определение понятия «межэлементная связь» системы 1. установленное направление и величина влияния одного элемента системы на другой. 2. связь между выходом объекта и внешней средой. 3. соединение двух элементов системы. 4. объединение двух или нескольких элементов системы. 5. связь между входом объекта и внешней средой.
38. Принцип «чёрного ящика» – это: 1. представление и изучение совокупности элементов по принципу открытой системы. 2. представление и изучение совокупности элементов по принципу закрытой системы. 3. представление и изучение не связной совокупности элементов. 4. представление и изучение случайной совокупности объектов. 5. представление и изучение совокупности элементов по принципу «вход-выход».
39. Выберите правильное определение понятия «структура системы» 1. порядок перечисления элементов системы. 2. порядок формирования системы из выделенного множества элементов и их взаимосвязей. 3. порядок оценки силы связей системы. 4. матрица межэлементных связей и их направлений в данной системе. 5. порядок перечисления межэлементных связей системы.

40. Под определением понятия «декомпозиция системы» понимается: 1. выбор и обоснование межэлементных связей. 2. поиск элемента с наибольшим числом связей. 3. формирование системы из выбранного множества элементов. 4. формулировка ограничений на параметры системы. 5. условное деление системы на её составляющие.
41. Эмерджентность - это: 1. несоответствие совокупных свойств множества микро - элементов системы и их связей свойствам системы в целом. 2. разнородность характеристик множества микро-элементов системы и их связей. 3. критерий сложности межэлементных связей. 4. соответствие совокупных свойств множества микро - элементов системы и их связей свойствам системы в целом. 5. критерий силы межэлементных связей.
42. Дана схема системы из двух параллельно соединённых элементов. Укажите правильную формулу определения состояния системы, если известны состояния их элементов Р1, Р2 1. Р = (1-Р1) (1- Р2). 2. Р = 1- Р1 Р2. 3. Р = 1- (1-Р1) (1- Р2). 4. Р = 1- (1-Р1 Р2). 5. Р = 1- (Р1 Р2)2.
43. Вероятность заданного уровня состояния качества системы «Р» с течением времени эксплуатации (использования) системы может: 1. только понижаться. 2. только возрастать. 3. быть постоянной. 4. быть равной «1». 5. быть равной «0».
44. Назовите все виды соединений элементов, принятые при проектировании систем 1. случайно-последовательные и прямые. 2. прямые, опосредованные, параллельные. 3. параллельные, последовательные и случайные. 4. параллельные, последовательные, параллельно-последовательные. 5. случайно-последовательные и параллельные.
45. Дана схема системы из двух последовательно соединённых элементов. Укажите правильную формулу определения состояния системы, если известны состояния их элементов Р1, Р2 1. Р = Р1 - Р2. 2. Р = Р1 / Р2. 3. Р = Р1 + Р2. 4. Р = Р1 = Р2. 5. Р = Р1 х Р2.
46.

47. Какой из приведенных ниже принципов является принципом построения моделей? 1. принцип ранжирования. 2. принцип приоритета функции над структурой. 3. принцип эксперимента. 4. принцип децентрализации. 5. принцип иерархии.
48.
49.
50.
51.
52.
53.
54.
55. Какой из приведенных ниже принципов является принципом построения моделей? 1. принцип осуществимости. 2. принцип предпочтения. 3. принцип рассмотрения совместно со связями со средой. 4. принцип глобальной цели. 5. принцип неопределенности.
56. Какой из приведенных ниже принципов является принципом построения моделей? 1. принцип ранжирования. 2. принцип приоритета функции над структурой. 3. принцип эксперимента. 4. принцип децентрализации. 5. принцип иерархии.
57. Как проверяется степень соответствия модели описываемому явлению? 1. эмпирической оценкой. 2. экспертной оценкой. 3. аддитивным анализом. 4. мультипликативным анализом. 5. последовательно-параллельной оценкой.
58. Что бы Вы отнесли к особенностям системного моделирования? 1. выдвижение гипотез при исследовании. 2. операциональное исследование. 3. использование алгоритмов, допускающих оперативную переналадку. 4. необходимость получения показателя эффективности системы. 5. учет характеристик системы на системном уровне.
59. Какие из перечисленных требований относятся к математическим моделям? 1. синхронность. 2. совместимость. 3. быстродействие. 4. эмерджентность. 5. адекватность.
60. На чем основывается оценка точности модели? 1. на методе максимального правдоподобия. 2. на реалистичности. 3. на совместимости. 4. на результативности. 5. на реализуемости.
61. Как можно оценить погрешность модели? 1. методом измерения предпочтений. 2. методом наименьших квадратов. 3. корреляционным анализом. 4. функционально-стоимостным анализом. 5. факторным анализом.
62. Как может быть оценена ошибка метода статистических испытаний? 1. степенью достоверности. 2. границами интервала, заданного ЛПР. 3. корреляционным анализом. 4. доверительной вероятностью. 5. статистической проверкой гипотез.
63. Какое распределение вероятностей положено в основу процедуры генерирования случайных чисел? 1. нормальное. 2. экспоненциальное. 3. равномерное. 4. логарифмическое. 5. показательное.
64. Выберите наиболее точное определение термина «Internet»: 1. совокупность всех веб-сайтов. 2. глобальная компьютерная сеть, построенная на использовании протокола IP и маршрутизации пакетов данных. 3. объединение всех веб-серверов. 4. услуга, предоставляемая компаниями-провайдерами для связи между компьютерами. 5. совокупность всех объединённых в сети компьютеров.
65. Узловой компьютер – это компьютер, который: 1. работает под операционной системой Windows Server. 2. имеет очень высокую производительность центрального процессора по сравнению с другими компьютерами в локальной сети. 3. выполняет определенные функции по запросам других компьютеров локальной сети. 4. постоянно подключен к Internet и предоставляет доступ в сеть для других компьютеров. 5. использует IP-адрес 127.0.0.1.
66. Сервер – это: 1. компьютер с самым высокопроизводительным в локальной сети центральным процессором. 2. компьютер с самым большим в локальной сети объёмом ПЗУ. 3. компьютер, выделенный и/или специализированный для выполнения определенных сервисных функций. 4. программа, распределяющая доступ к Internet для всех компьютеров в локальной сети. 5. компьютер, способный работать без монитора.
67. Дайте определение термину «программа-клиент» в программной концепции «клиент-сервер»: 1. Операционная система терминала. 2. Программа для обмена мгновенными сообщениями между пользователями терминалов. 3. Программа для доступа в интернет через сервер. 4. Программа для определения производительности сервера. 5. Программа, запрашивающая с сервера какие-либо данные, манипулирующая данными непосредственно на сервере, запускающая на сервере новые процессы и т.п.
68. Как расшифровывается DNS? 1. Digital Name System. 2. Direct Netwok System. 3. Digital Netwok System. 4. Domain Name System. 5. нет верного ответа.
69. IP-адрес - это: 1. Физический адрес сетевой платы компьютера в компьютерной сети. 2. Сетевой адрес узла в компьютерной сети, построенной по протоколу IP. 3. Сетевой адрес персонального компьютера, зависящий от выбора интернет-браузера. 4. Физический адрес, определяющий местоположение устройства, имеющего доступ в интернет. 5. Адрес сетевого принтера в локальной сети.

70. TCP/IP - это: 1. Протокол для передачи электронной почты и мгновенных сообщений. 2. Шина персонального компьютера, служащая для работы с сетью Internet. 3. Набор сетевых протоколов разных уровней модели сетевого взаимодействия, используемых в информационных сетях. 4. Основная характеристика сетевой платы персонального компьютера. 5. Сетевой протокол, позволяющий компьютерам автоматически получать IP-адрес и другие параметры, необходимые для работы в Internet.
71. HTTP – это: 1. протокол передачи данных. 2. домен верхнего уровня в сети Internet. 3. язык программирования для создания веб-страниц. 4. хостинг, где расположены интернет-сервера. 5. формальный заголовок адреса веб-страницы.
72. Что из перечисленного является IP-адресом версии 4? 1. 192.168.0.1. 2. fe80:0:0:0:200:f8ff:fe21:67cf. 3. 00-1D-3F-A2-48-56. 4. 2:466/466. 5. yandex.ru.
73. Какая из перечисленных программ не является интернет-браузером? 1. Netscape Navigator. 2. Internet Explorer. 3. Google Chrome. 4. The Bat! 5. Mozilla Thunderbird.
74. Как называется совокупность элементов (предметов любой природы), находящихся в отношениях и связях друг с другом? 1. система. 2. упорядоченный набор. 3. звено. 4. комплекс. 5. сочетание.
75. При объединении элементов в систему последняя приобретает специфические системные свойства, не присущие ни одному из элементов. Как называются эти свойства? 1. предсказуемость. 2. толерантность. 3. синергетичность. 4. эмерджентные. 5. управляемость.
76. К каким системам относятся системы со слабопредсказуемым поведением и способностью принимать решения? 1. к простым. 2. к смешанным. 3. к сложным. 4. к критическим. 5. к управляемым.
77. Как называется система целенаправленных действий, объединенных общим замыслом и единой целью? 1. стратегия. 2. операция. 3. тактика. 4. процесс. 5. управление.

78. Как называется мера степени соответствия реального результата операции требуемому? 1. критерий эффективности. 2. степень эффективности. 3. мера эффективности. 4. потенциальная эффективность. 5. показатель эффективности.
79. Как называется форма упорядочения элементов множества, то есть устранение неопределенности в выборе некоторого элемента или некоторого подмножества? 1. предпочтение. 2. толерантность. 3. симметричность. 4. ранжирование. 5. построение.
80. Чем определяется, прежде всего, выбор отношения для описания системы? 1. Предметной областью. 2. Внешними системами. 3. Целью анализа. 4. Предпочтением ЛПР. 5. Информационной средой задачи.
81. Какими свойствами обладает система предпочтений индивида на множестве D элементов выбора, если он умеет сравнить между собой любые два элемента и всегда вынести одно из трех альтернативных суждений: а) предпочтительнее ; б) и одинаково предпочтительны: в) предпочтительнее ? 1. устойчивостью. 2. эмерджентностью. 3. информативностью. 4. управляемостью. 5. свойством полноты.
82. Как называется способ, при котором ЛПР просит указать степень влияния изменения значения частного показателя эффективности на результат операции? 1. способ выражения предпочтения субъективными вероятностями. 2. способ выражения предпочтений коэффициентами важности. 3. способ попарного выражения предпочтения как доли относительной интенсивности. 4. способ попарного выражения предпочтения как доли суммарной интенсивности. 5. способ выражения предпочтений лингвистическими переменными.
83. Как распределены промежутки времени между событиями простейшего потока? 1. по экспоненциальному закону. 2. по равномерному закону. 3. по нормальному закону. 4. по логарифмическому закону. 5. по гипернормальному закону.