Развитие тэс. Развитие тэц в современных российских условиях

Для оценки перспектив ТЭС прежде всего необходимо осознать их преимущества и недостатки в сравнении с другими источниками электроэнергии.

К числу преимуществ можно отнести следующие.

  • 1. В отличие от ГЭС тепловые электростанции можно размещать относительно свободно с учетом используемого топлива. Газомазутные ТЭС могут быть построены в любом месте, так как транспорт газа и мазута относительно дешев (по сравнению с углем). Пылеугольные ТЭС желательно размещать вблизи источников добычи угля. К настоящему времени «угольная» теплоэнергетика сложилась и имеет выраженный региональный характер.
  • 2. Удельная стоимость установленной мощности (стоимость 1 кВт установленной мощности) и срок строительства ТЭС значительно меньше, чем АЭС и ГЭС.
  • 3. Производство электроэнергии на ТЭС в отличие от ГЭС не зависит от сезона и определяется только доставкой топлива.
  • 4. Площади отчуждения хозяйственных земель для ТЭС существенно меньше, чем для АЭС, и, конечно, не идут ни в какое сравнение с ГЭС, влияние которых на экологию может иметь далеко не региональный характер. Примерами могут служить каскады ГЭС на р. Волге и Днепре.
  • 5. На ТЭС можно сжигать практически любое топливо, в том числе самые низкосортные угли, забалластированные золой, водой, породой.
  • 6. В отличие от АЭС нет никаких проблем с утилизацией ТЭС по завершении срока службы. Как правило, инфраструктура ТЭС существенно «переживает» основное оборудование (котлы и турбины), установленное на ней, а здания, машзал, системы водоснабжения и топливоснабжения и т.д., которые составляют основную часть фондов, еще долго служат. Большинство ТЭС, построенных более 80 лег по плану ГОЭЛРО, до сих пор работают и будут работать дальше после установки на них новых, более совершенных турбин и котлов.

Наряду с этими достоинствами, ТЭС имеет и ряд недостатков.

  • 1. ТЭС - самые экологически «грязные» источники электроэнергии, особенно те, которые работают на высокозольном сернистом топливе. Правда, сказать, что АЭС, не имеющие постоянных выбросов в атмосферу, но создающие постоянную угрозу радиоактивного загрязнения и имеющие проблемы хранения и переработки отработавшего ядерного топлива, а также утилизации самой АЭС после окончания срока службы, или ГЭС, затопляющие огромные площади хозяйственных земель и изменяющие региональный климат, являются экологически более «чистыми» можно лишь со значительной долей условности.
  • 2. Традиционные ТЭС имеют сравнительно низкую экономичность (лучшую, чем у АЭС, но значительно худшую, чем у ПГУ).
  • 3. В отличие от ГЭС, ТЭС с трудом участвуют в покрытии переменной части суточного графика электрической нагрузки.
  • 4. ТЭС существенно зависят от поставки топлива, часто привозного.

Несмотря на все эти недостатки, ТЭС являются основными производителями электроэнергии в большинстве стран мира и останутся таковыми, по крайней мере на ближайшие 50 лет.

Перспективы строительства мощных конденсационных ТЭС тесно связаны с видом используемого органического топлива. Несмотря на большие преимущества жидкого топлива (нефти, мазута) как энергоносителя (высокая калорийность, легкость транспортировки), его использование на ТЭС будет все более и более сокращаться не только в связи с ограниченностью запасов, но и в связи с его большой ценностью как сырья для нефтехимической промышленности. Для России немалое значение имеет и экспортная ценность жидкого топлива (нефти). Поэтому жидкое топливо (мазут) на ТЭС будет использоваться либо как резервное топливо на газомазутных ТЭС, либо как вспомогательное топливо на пылеугольных ТЭС, обеспечивающее устойчивое горение угольной пыли в котле при некоторых режимах.

Использование природного газа на конденсационных паротурбинных ТЭС нерационально: для этого следует использовать парогазовые установки утилизационного типа, основой которых являются высокотемпературные ГТУ.

Таким образом, далекая перспектива использования классических паротурбинных ТЭС и в России, и за рубежом прежде всего связана с использованием углей, особенно низкосортных. Это, конечно, не означает прекращения эксплуатации газомазутных ТЭС, которые будут постепенно заменяться ПТУ.

Негативные экологические и социальные последствия строительства крупных ГЭС заставляют внимательно посмотреть на их возможное место в электроэнергетике будущего.

Будущее ГЭС

Большие гидроэлектростанции выполняют следующие функции в энергосистеме:

  1. производство электроэнергии;
  2. быстрое согласование мощности генерации с потребляемой мощностью, стабилизация частоты в энергосистеме;
  3. накопление и хранение энергии в форме потенциальной энергии воды в поле тяготения Земли с преобразованием в электроэнергию в любое время.

Выработка электроэнергии и маневр мощностью возможны на ГЭС любого масштаба. А накопление энергии срок от нескольких месяцев до нескольких лет (на зиму и на маловодные годы) требует создания больших водохранилищ.

Для сравнения: автомобильный аккумулятор массой 12 кг напряжением 12 В и емкостью 85 амперчасов может хранить 1,02 киловатт-часа (3,67 МДж). Чтобы запасти такое количество энергии и преобразовать ее в электрическую в гидроагрегате с КПД 0,92, нужно поднять 4 тонны (4 куб.м) воды на высоту 100 м. или 40 тонн воды на высоту 10 м.

Чтобы ГЭС мощностью всего 1 МВт работала на запасенной воде 5 месяцев в году по 6 часов в день на запасенной воде, нужно на высоте 100 м накопить и затем пропустить через турбину 3,6 миллиона тонн воды. При площади водохранилища 1 кв.км понижение уровня составит 3,6 м. Такой же объем выработки на дизельной электростанции с КПД 40% потребует 324 т солярки. Таким образом, в холодном климате запасение энергии воды на зиму требует высоких плотин и больших водохранилищ.

Кроме того, на бо льшей части территории России в зоне вечной мерзлоты малые и средние реки зимой промерзают до дна. В этих краях малые ГЭС зимой бесполезны.

Большие ГЭС неизбежно находятся на значительном расстоянии от многих потребителей, и следует учитывать затраты на строительство линий электропередачи и потери энергии а нагрев проводов. Так, для Транссибирской (Шилкинской) ГЭС стоимость строительства ЛЭП-220 до Транссиба протяженностью всего 195 км (очень мало для такой стройки) превышает 10% всех затрат. Затраты на строительство сетей электропередачи столь существенны, что в Китае мощность ветряков, до сих пор не подключенных к сети, превышает мощность всей энергетики России к востоку от Байкала.

Таким образом, перспективы гидроэнергетики зависят от прогресса технологий и производства, и хранения и передачи энергии в совокупности.

Энергетика – очень капиталоемкая и потому консервативная отрасль. До сих пор работают некоторые электростанции, особенно ГЭС, построенные в начале двадцатого века. Поэтому для оценки перспективы на полвека вместо объемных показателей того или иного вида энергетики важнее смотреть на скорость прогресса в каждой технологии. Подходящие показатели технического прогресса в генерации – КПД (или процент потерь), единичная мощность агрегатов, стоимость 1 киловатта мощности генерации, стоимость передачи 1 киловатта на 1 км, стоимость хранения 1 киловатт-часа в сутки.

Аккумулирование энергии

Хранение электроэнергии – новая отрасль в энергетике. Долгое время люди хранили топливо (дрова, уголь, потом нефть и нефтепродукты в цистернах, газ в емкостях под давление и подземных хранилищах). Потом появились накопители механической энергии (поднятой воды, сжатого воздуха, супермаховики и др.), среди них лидером остаются гидроаккумулирующие электростанции.

Вне зон вечной мерзлоты тепло, накопленное солнечными водонагревателями, уже можно закачивать под землю для отопления домов зимой. После распада СССР прекратились опыты по использованию энергии солнечного тепла для химических превращений.

Известные химические аккумуляторы имеют ограниченное количество циклов заряд-разряд. Суперконденсаторы имеют намного бо льшую долговечность, но их емкость пока недостаточна. Очень быстро совершенствуются накопители энергии магнитного поля в сверхпроводящих катушках.

Прорыв в распространении накопителей электроэнергии произойдет, когда цена снизится до 1 долл. за киловатт-час. Это позволит широко использовать виды электрогенерации, не способные работать непрерывно (солнечная, ветровая, приливная энергетика).

Альтернативная энергетика

Из технологий генерации быстрее всего сейчас происходят перемены в солнечной энергетике. Солнечные батареи позволяют производить энергию в любом потребном количестве – от зарядки телефона до снабжения мегаполисов. Энергии Солнца на Земле в сотню раз больше, чем остальных видов энергии вместе взятых.

Ветроэлектростанции прошли период снижения цен и находятся на этапе роста размеров башен и мощности генераторов. В 2012 году мощность всех ветряков мира превзошла мощность всех электростанций СССР. Однако в 20-е годы 21 века возможности улучшения ветряков будут исчерпаны и двигателем роста останется солнечная энергетика.

Технология больших ГЭС миновала свой «звездный час», с каждым десятилетием больших ГЭС строят все меньше. Внимание изобретателей и инженеров переключается на приливные и волновые электростанции. Однако приливы и большие волны есть не везде, поэтому их роль будет невелика. В 21 веке еще будут строить малые ГЭС, особенно в Азии.

Получение электроэнергии за счет тепла, идущего из недр Земли (геотермальная энергетика) перспективно, но лишь в отдельных районах. Технологии сжигания органического топлива еще несколько десятилетий будут составлять конкуренцию солнечной и ветровой энергетике, особенно там, где мало ветра и солнца.

Быстрее всего совершенствуются технологии получения горючего газа путем брожения отходов, пиролиза или разложения в плазме). Тем не менее, твердые бытовые отходы всегда перед газификацией будут требовать сортировки (а лучше раздельного сбора).

Технологии ТЭС

КПД парогазовых электростанций превысил 60%. Переоборудование всех газовых ТЭЦ в парогазовые (точнее, газопаровые) позволит увеличить выработку электроэнергии более чем на 50% без увеличения сжигания газа.

Угольные и мазутные ТЭЦ намного хуже газовых и по КПД, и по цене оборудования, и по количеству вредных выбросов. Кроме того, добыча угля требует больше всего человеческих жизней на мегаватт-час электроэнергии. Газификация угля на несколько десятилетий продлит существование угольной отрасли, но вряд ли профессия шахтера доживет до 22 века. Очень вероятно, что паровые и газовые турбины будут вытеснены быстро совершенствующимися топливными элементами в которых химическая энергия преобразуется в электрическую минуя стадии получения тепловой и механической энергии. Пока же топливные элементы очень дороги.

Атомная энергетика

Коэффициент полезного действия АЭС последние 30 лет рос медленнее всего. Совершенствование ядерных реакторов, каждый из которых стоит несколько миллиардов долларов, происходит очень медленно, а требования безопасности приводят к росту стоимости строительства. «Ядерный ренессанс» не состоялся. С 2006 г. в мире ввод мощностей АЭС меньше не только ввода ветровых, но и солнечных. Тем не менее, вероятно что некоторые АЭС доживут до 22 века, хотя из-за проблемы радиоактивных отходов их конец неизбежен. Возможно, в 21 веке будут работать и термоядерные реакторы, но их малое число, безусловно, «погоды не сделает».

До сих пор остается неясной возможность реализации «холодного термояда». В принципе, возможность термоядерной реакции без сверхвысоких температур и без образования радиоактивных отходов не противоречит законам физики. Но перспективы получения таким способом дешевой энергии очень сомнительны.

Новые технологии

И немного фантастики в чертежах. Сейчас в России проходят проверку три новых принципа изотермического преобразования теплоты в электричество. У этих опытов очень много скептиков: ведь нарушается второе начало термодинамики. Пока получена одна десятая микроватта. В случае успеха, сначала появятся батарейки для часов и приборов. Потом лампочки без проводов. Каждая лампочка станет источником прохлады. Кондиционеры будут вырабатывать электроэнергию вместо того чтобы потреблять ее. Провода в доме станут не нужны. Когда фантастика станет явью – судить рано.

А пока провода нам нужны. Больше половины цены киловатт-часа в России приходится на стоимость строительства и содержания линий электропередач и подстанций. Более 10% вырабатываемой электроэнергии уходит на нагрев проводов. Снизить затраты и потери позволяют «умные сети», автоматически управляющие множеством потребителей и производителей энергии. Во многих случаях для снижения потерь лучше передавать постоянный ток, чем переменный. Вообще избежать нагрева проводов можно, сделав их сверхпроводящими. Однако сверхпроводники, работающие при комнатной температуре, не найдены и неизвестно, будут ли найдены.

Для малонаселенных территорий с высокими затратами на транспортировку также важна распространенность и общедоступность источников энергии.

Наиболее распространена энергия Солнца, но Солнце видно не всегда (особенно за Полярным кругом). Зато зимой и ночью часто дует ветер, но не всегда и не везде. Тем не менее, ветросолнечные электростанции уже сейчас позволяют в разы снизить расход солярки в отдаленных поселках.

Некоторые геологи уверяют, что нефть и газ образуются почти повсеместно и в наши дни из углекислого газа, попадающего с водой под землю. Правда, использование гидроразрыва пластов («фрекинга») разрушает естественные места, где нефть и газ могут скапливаться. Если это верно, то небольшое количество нефти и газа (в десятки раз меньше, чем сейчас) можно добывать почти везде без ущерба для геохимического кругооборота углерода, вот только экспортировать углеводороды – значит, лишать себя будущего.

Разнообразие природных ресурсов в мире означает, что устойчивое получение электроэнергии требует сочетания разных технологий применительно к местным условиям. В любом случае, неограниченное количество энергии на Земле получить нельзя и по экологическим, и по ресурсным причинам. Поэтому рост производства электроэнергии, стали, никеля и других материальных вещей на Земле в ближайшем столетии неизбежно сменится ростом производства интеллектуального и духовного.

Игорь Эдуардович Шкрадюк





























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Презентация представляет собой дополнительный материал к урокам, посвящённым развитию энергетики. Энергетика любой страны является основой развития производительных сил, создания материально – технической базы общества. В презентации отражены проблемы и перспективы всех видов энергетики, перспективные (новые) виды энергетики, используется опыт музейной педагогики, самостоятельные поисковые работы обучающихся (работа с журналом «Япония сегодня»), творческие работы обучающихся (плакаты). Презентацию можно использовать на уроках географии в 9 и 10 классах, во внеурочной деятельности (занятиях на факультативах, элективных курсах), в проведении Недели географии «22 апреля – День Земли», на уроках экологии и биологии «Глобальные проблемы человечества. Сырьевая и энергетическая проблема».

В своей работе я использовала метод проблемного обучения, который заключался в создании перед обучающимися проблемных ситуаций и разрешении их в процессе совместной деятельности учащихся и учителя. При этом учитывалась максимальная самостоятельность обучающихся и под общим руководством учителя, направляющего деятельность обучающихся.

Проблемное обучение позволяет не только сформировать у обучающихся, необходимую систему знаний, умений и навыков, достигать высокого уровня развития школьников, но, что особенно важно, оно позволяет сформировать особый стиль умственной деятельности, исследовательскую активность и самостоятельность обучающихся. При работе с данной презентацией у обучающихся проявляется актуальное направление – исследовательская деятельность школьников.

Отрасль объединяет группу производств, занятых добычей и транспортировкой топлива, выработкой энергии и передачей её потребителю.

Природные ресурсы, которые используют для получения энергии – это топливные ресурсы, гидроресурсы, ядерная энергия, а также альтернативные виды энергии. Размещение большинства отраслей промышленности зависит от развития электроэнергии. Наша страна располагает огромными запасами топливно – энергетических ресурсов. Россия была, есть и будет одной из ведущих энергетических держав мира. И это не только потому, что в недрах страны находится 12% мировых запасов угля, 13% нефти и 36% мировых запасов природного газа, которых достаточно для полного обеспечения собственных потребностей и для экспорта в сопредельные государства. Россия вошла в число ведущих мировых энергетических держав, прежде всего, благодаря созданию уникального производственного, научно – технического и кадрового потенциала ТЭК.

Сырьевая проблема

Минеральные ресурсы – первоисточник, исходная основа человеческой цивилизации практически во всех фазах ее развития:

– Топливные полезные ископаемые;
– Рудные полезные ископаемые;
– Нерудные полезные ископаемые.

Современные темпы энергопотребления растут в геометрической прогрессии. Если даже учесть, что темпы роста потребления электроэнергии несколько сократятся из-за совершенствования энергосберегающих технологий, запасов электрического сырья хватит максимум на 100 лет. Однако положение усугубляется ещё и несоответствием структуры запасов и потребления органического сырья. Так, 80% запасов органического топлива приходится на уголь и лишь 20% на нефть и газ, в то время как 8/10 современного энергопотребления приходится на нефть и газ.

Следовательно, временные рамки ещё более сужаются. Однако лишь сегодня человечество избавляется от идеологических представлений о том, что они практически бесконечны. Ресурсы минерального сырья ограничены, фактически невосполнимы.

Энергетическая проблема.

Сегодня энергетика мира базируется на источниках энергии:

– Горючих минеральных ископаемых;
– Горючих органических ископаемых;
– Энергия рек. Нетрадиционные виды энергии;
– Энергия атома.

При современных темпах подорожания топливных ресурсов Земли проблема использования возобновляемых источников энергии становится всё более актуальной и характеризует энергетическую и экономическую независимости государства.

Преимущества и недостатки ТЭС.

Преимущества ТЭС:

1. Себестоимость электроэнергии на ГЭС очень низкая;
2. Генераторы ГЭС можно достаточно быстро включать и выключать в зависимости от потребления энергии;
3. Отсутствует загрязнение воздуха.

Недостатки ТЭС:

1. Строительство ГЭС может быть более долгим и дорогим, чем других энергоисточников;
2. Водохранилища могут занимать большие территории;
3. Плотины могут наносить ущерб рыбному хозяйству, поскольку перекрывают путь к нерестилищам.

Преимущества и недостатки ГЭС.

Преимущества ГЭС:
– Строятся быстро и дешево;
– Работают в постоянном режиме;
– Размещены практически повсеместно;
– Преобладание ТЭС в энергетическом хозяйстве РФ.

Недостатки ГЭС:

– Потребляют большое количество топлива;
– Требует длительной остановки при ремонтах;
– Много тепла теряется в атмосфере, выбрасывают много твердых и вредных газов в атмосферу;
– Крупнейшие загрязнители окружающей среды.

В структуре выработки электроэнергии в мире первое место принадлежит тепловым электростанциям (ТЭС) – их доля составляет 62%.
Альтернативой органическому топливу и возобновляемым источником энергии является гидроэнергетика. Гидроэлектростанция (ГЭС) - электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища. Гидроэнергетика – это получение электроэнергии за счет использования возобновляемых речных, приливных, геотермальных водных ресурсов. Это использование возобновляемых водных ресурсов предполагает управление паводками, укрепление русла рек, переброс водных ресурсов в районы, страдающие от засухи, сохранение подземных токовых вод.
Однако и здесь источник энергии достаточно сильно ограничен. Это связано с тем, что крупные реки, как правило сильно удалены от промышленных центов либо их мощности практически полностью использованы. Таким образом, гидроэнергетика, в настоящий момент обеспечивающего около 10% производства энергии в мире, не сможет существенно увеличить эту цифру.

Проблемы и перспективы АЭС

В России доля атомной энергии достигает 12%. Имеющиеся в России запасы добытого урана обладают электропотенциалом в 15 трлн. кВт.ч, это столько сколько смогут выработать все наши электростанции за 35 лет. На сегодня только атомная энергетика
способна резко и за короткий срок ослабить явление парникового эффекта. Актуальной проблемой является безопасность АЭС. 2000 год стал началом перехода принципиально новые подходы к нормированию и обеспечению радиационной безопасности АЭС.
За 40 лет развития атомной энергетики в мире построено около 400 энергоблоков в 26 странах мира. Основными преимуществами атомной энергетики являются высокая конечная рентабельность и отсутствие выбросов в атмосферу продуктов сгорания, основными недостатками является потенциальная опасность радиоактивного заражения окружающей среды продуктами деления ядерного топлива при аварии и проблема переработки использованного ядерного топлива.

Нетрадиционная (альтернативная энергетика)

1. Солнечная энергетика . Это использование солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемый источник энергии и в перспективе может стать экологически чистой.

Преимущества солнечной энергии:

– Общедоступность и неисчерпаемость источника;
– Теоретически, полная безопасность для окружающей среды.

Недостатки солнечной энергии:

– Поток солнечной энергии на поверхности Земли сильно зависит от широты и климата;
– Солнечная электростанция не работает ночью и недостаточно эффективно работает в утренних и вечерних сумерках;
Фотоэлементы содержат ядовитые вещества, например, свинец, кадмий, галлий, мышьяк и т. д., а их производство потребляет массу других опасных веществ.

2. Ветроэнергетика . Это отрасль энергетики, специализирующаяся на использовании энергии ветра - кинетической энергии воздушных масс в атмосфере. Так как энергия ветра является следствием деятельности солнца, то её относят к возобновляемым видам энергии.

Перспективы ветроэнергетики.

Ветроэнергетика является бурно развивающейся отраслью, так в конце 2007 года общая установленная мощность всех ветрогенераторов составила 94,1 гигаватта, увеличившись впятеро с 2000 год. Ветряные электростанции всего мира в 2007 году произвели около 200 млрд кВт·ч, что составляет примерно 1,3 % мирового потребления электроэнергии. Прибрежная ферма ветроэнергетических установок Миддельгрюнден, около Копенгагена, Дания. На момент постройки она была крупнейшей в мире.

Возможности реализации ветроэнергетики в России. В России возможности ветроэнергетики до настоящего времени остаются практически не реализованными. Консервативное отношение к перспективному развитию топливно-энергетического комплекса практически тормозит эффективное внедрение ветроэнергетики, особенно в Северных районах России, а также в степной зоне Южного Федерального Округа, и в частности в Волгоградской области.

3. Термоядерная энергетика. Солнце - природный термоядерный реактор. Ещё более интересной, хотя и относительно отдалённой перспективой выглядит использование энергии ядерного синтеза. Термоядерные реакторы, по расчётам, будут потреблять меньше топлива на единицу энергии, и как само это топливо (дейтерий, литий, гелий-3), так и продукты их синтеза нерадиоактивны и, следовательно, экологически безопасны.

Перспективы термоядерной энергетики. Данная область энергетики имеет огромный потенциал, в настоящее время в рамках проекта "ITER", в котором участвуют Европа, Китай, Россия, США, Южная Корея и Япония во Франции идет строительство крупнейшего термоядерного реактора, целью которого является вывести УТС (Управляемый термоядерный синтез) на новый уровень. Строительство планируется завершить в 2010 году.

4. Биотопливо, биогаз. Биотопливо - это топливо из биологического сырья, получаемое, как правило, в результате переработки стеблей сахарного тростника или семян рапса, кукурузы, сои. Различается жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол, метанол, биодизель) и газообразное (биогаз, водород).

Виды биотоплива:

– Биометанол
– Биоэтанол
– Биобутанол
– Диметиловый эфир
– Биодизель
– Биогаз
– Водород

На данный момент самые развитые – биодизель и водород.

5. Геотермальная энергия. Под вулканическими островами Японии скрыты огромные количества геотермальной энергии, этой энергией можно воспользоваться извлекая горячую воду и пар. Преимущество: выделяет примерно в 20 раз меньше углекислого газа при производстве электричества, что снижает ее влияние на глобальную окружающую среду.

6. Энергия волн, приливов и отливов. В Японии важнейший источник энергии волновые турбины, которые преобразуют вертикальное движение океанских волн в давление воздуха вращающего турбины электрогенераторов. На побережье Японии установлено большое количество буев, использующих энергию приливов и отливов. Так используют энергию океана для обеспечения безопасности океанского транспорта.

Огромный потенциал энергии Солнца мог бы теоритически обеспечить все мировые потребности энергетики. Но КПД преобразования тепла в электроэнергию всего 10%. Это ограничивает возможности Солнечной энергетики. Принципиальные трудности возникают и при анализе возможностей создания генераторов большой мощности, использующих энергию ветра, приливы и отливы, геотермальную энергию, биогаз, растительное топливо и т.д. Всё это приводит к выводу об ограниченности возможностей рассмотренных так называемых «воспроизводимых» и относительно экологически чистых ресурсов энергетики, по крайней мере, в относительно близком будущем. Хотя эффект от их использования при решении отдельных частных проблем энергообеспечения может быть уже сейчас весьма впечатляющим.

Конечно, существует оптимизм по поводу возможностей термоядерной энергии и других эффективных способов получения энергии, интенсивно исследуемых наукой, но при современных масштабах энергопроизводства. При практическом освоении этих возможных источников потребуется несколько десятков лет из-за высокой капиталоёмкости и соответствующей инерционности в реализации проектов.

Исследовательские работы обучающихся:

1. Спецрепортаж «Зеленая энергия» для будущего: «Японии является мировым лидером по производству солнечной электроэнергии. 90% солнечной энергии, производимой в Японии, вырабатывается солнечными панелями в обычных домах. Японское правительство поставило цель в 2010 году получить примерно 4,8 млн. кВт энергии от солнечных батарей. Производство электроэнергии из биомассы в Японии. Из кухонных отходов выделяют газ метан. На этом газе работает двигатель, который генерирует электричество, также создаются благоприятные условия для защиты окружающей среды.

Перспективы развития электроэнергетики

Стратегическими целями развития электроэнергетики в рассматриваемой перспективе являются:

­ надежное энергоснабжение экономики и населения страны электроэнергией;

­ сохранение целостности и развитие Единой энергетической системы страны, ее интеграция с другими энергообъединениями на Евразийском континенте;

­ повышение эффективности функционирования и обеспечение устойчивого развития электроэнергетики на базе новых современных технологий;

­ снижение вредного воздействия на окружающую среду.

Исходя из прогнозируемых объемов спроса на электроэнергию при высоких темпах развития экономики (оптимистический и благоприятный варианты), суммарное производство электроэнергии может возрасти по сравнению с 2000 г. более, чем в 1,2 раза к 2010 г. (до 1070 млрд. кВт.ч) и в 1,6 раза к 2020 г. (до 1365 млрд. кВт.ч). При пониженных темпах развития экономики (умеренный вариант) производство электроэнергии составит, соответственно, 1015 и 1215 млрд. кВт.ч.

Обеспечение этих уровней электропотребления требует решения ряда проблем, которые носят системный характер:

­ ограничения по межсистемным перетокам мощности,

­ старение основного энергетического оборудования,

­ технологическая отсталость, нерациональная структура топливного баланса и др.

Остаются невостребованными энергетические мощности, Сибирских ГЭС и ТЭС: запертые мощности в этом регионе составляют порядка 7-10 млн. кВт. Поэтому одной из стратегических задач электроэнергетики является развитие межсистемных электропередач 500-1150 кВ для усиления надежности параллельной работы ОЭС Сибири с энергосистемами европейской части России по трассе Итат - Челябинск и с ОЭС Дальнего Востока (Иркутск - Зея - Хабаровск). Это позволит избежать дорогостоящих перевозок угля из Кузбасса и КАТЭКа за счет их использования на местных ТЭС с выдачей 5-6 млн. кВт на запад и 2-3 млн. кВт - на восток. Кроме того, использование маневренных возможностей ГЭС Ангаро-Енисейского каскада снимет напряженность с регулированием графика нагрузки в европейских районах.

Износ активной части фондов в электроэнергетике составляет в целом 60-65%, в т.ч. в сельских распределительных сетях - свыше 75%. Отечественное оборудование, составляющее техническую основу электроэнергетики, морально устарело, уступает современным требованиям и лучшим мировым изделиям. Поэтому необходимо не только поддержание работоспособности, но и существенное обновление ОПФ на базе новой техники и технологий производства и распределения электроэнергии и тепла.

Наличие в энергосистемах изношенного, выработавшего свой ресурс оборудования, доля которого уже превысила 15% всех мощностей, и отсутствие возможности его восстановления вводит электроэнергетику в зону повышенного риска, технологических отказов, аварий и, как следствие, - снижения надежности электроснабжения.

Нерациональная структура топливного баланса обусловлена проводившейся политикой цен на первичные энергоносители для электростанций. Цены на уголь в среднем в 1,5 раза превышают цены на газ. При таких условиях, учитывая большую капиталоемкость угольных электростанций, они становятся не конкурентоспособными и не могут развиваться, что может усугубить сложившуюся за последние годы ситуацию, когда в структуре топливного баланса тепловых электростанций доля выработки электроэнергии на газе превышала 60%.

Для развития единой национальной электрической сети как основного элемента Единой энергосистемы России и укрепления единства экономического пространства страны предусматривается сооружение ЛЭП в объеме, обеспечивающем устойчивое и надежное функционирование ЕЭС России и устранение технических ограничений, сдерживающих развитие конкурентного рынка электрической энергии и мощности.

В основу перспективного развития электрической сети ЕЭС России закладываются следующие основные принципы:

­ гибкость, позволяющая осуществлять поэтапное развитие и возможность приспосабливаться к изменению условий функционирования (рост нагрузки, развитие электростанций, реверс потоков мощности, реализация новых межгосударственных договоров по поставке электроэнергии);

­ развитие основной сети ЕЭС России путем постепенной «надстройки» линиями более высокого напряжения после достаточно полного охвата территории сетями предыдущего класса напряжения и исчерпания их возможностей, а также готовности этих сетей к работе с наложенными на них одиночными электропередачами более высокого напряжения;

­ сведение к минимуму числа дополнительных трансформаций 220/330, 330/500, 500/750 кВ в зонах совместного действия этих напряжений;

­ управляемость основной электрической сети путем использования средств принудительного потокораспределения - регулируемых шунтирующих реакторов, вставок постоянного тока, синхронных и статических компенсаторов, электромеханических преобразователей, фазоповоротных устройств и т.п.

Основу системообразующих сетей ЕЭС России в период до 2020 г. по-прежнему будут составлять линии электропередачи 500-750 кВ. Суммарный ввод ЛЭП напряжением 330 кВ и выше в период до 2020 г. должен составить в зависимости от варианта развития 25-35 тыс. км.

Развитие единой электрической сети страны будет осуществляться под контролем Федеральной сетевой компании и Системного оператора (с долей государства в обеих - 75% + 1 акция), при этом будет сохранена и обеспечена вертикаль диспетчерско-технологического управления.

Для обеспечения прогнозируемых уровней электро- и теплопотребления в оптимистическом и благоприятном вариантах вводы генерирующих мощностей на электростанциях России (с учетом замены и модернизации) на период 2003-2020 гг. оцениваются величиной порядка 177 млн. кВт, в том числе на ГЭС и ГАЭС - 11,2 млн. кВт, на АЭС - 23 млн. кВт, на ТЭС - 143 млн. кВт (из них ПТУ и ГТУ - 37 млн. кВт). В умеренном варианте вводы оцениваются величиной порядка 121 млн. кВт, в том числе на ГЭС и ГАЭС - 7 млн. кВт, на АЭС - 17 млн. кВт, на ТЭС - 97 млн. кВт (из них ПТУ и ГТУ - 31,5 млн. кВт).

Развитие электроэнергетики в рассматриваемый период времени будет исходить из следующих экономически обоснованных приоритетов территориального размещения генерирующих мощностей в отрасли:

­ в европейской части России - техническое перевооружение ТЭС на газе с замещением паросиловых турбин на парогазовые и максимальное развитие АЭС;

­ в Сибири - развитие ТЭС на угле и гидроэлектростанций;

­ на Дальнем Востоке - развитие ГЭС, ТЭЦ на газе в крупных городах и в отдельных районах - АЭС, АТЭЦ.

Основой электроэнергетики на всю рассматриваемую перспективу останутся тепловые электростанции, удельный вес которых в структуре установленной мощности отрасли сохранится на уровне 60-70%. Выработка электроэнергии на тепловых электростанциях к 2020 г. возрастет в 1,4 раза по сравнению с 2000 г.

Структура расходуемого топлива на ТЭС будет изменяться в сторону уменьшения доли газа к 2020 г. и, соответственно, увеличения доли угля, причем соотношение между газом и углем будет определяться складывающейся конъюнктурой цен на природный газ и уголь, а также политикой государства в использовании различных видов органического топлива для электроэнергетики.

Определяющим фактором является цена на природный газ, которая должна быть последовательно увеличена до уровня, обеспечивающего достаточные возможности для развития газовой отрасли. Для того чтобы электростанции на угле могли быть конкурентоспособными с электростанциями на газе на формирующемся рынке электроэнергии России, цена на газ должна быть в 1,6-2,0 раза выше цены на уголь. Такое соотношение цен позволит снизить долю газа в структуре потребления топлива ТЭС.

В результате величина среднего тарифа на электроэнергию по всем категориям потребителей оценивается на уровне 2020 г. в диапазоне 4,0-4,5 цент./кВт.ч. Необходимо ликвидировать перекрестное субсидирование и обеспечить дифференциацию тарифов в зависимости от суточного и сезонного графиков покрытия нагрузки, как это принято в мировой практике, так как затраты на производство электроэнергии от дорогих пиковых генерирующих мощностей в несколько раз превышают затраты на производство от базовых мощностей АЭС и ТЭЦ. Кроме того, предусматривается введение системы скидок энергоемким потребителям.

Сценарии развития теплоэнергетики, связанные с возможностью радикального изменения условий топливообеспечения тепловых электростанций в европейских районах страны, ужесточение экологических требований, преодоление к 2010 г. тенденции превышения темпов нарастания объемов оборудования электростанций, выработавших свой парковый ресурс, над темпами вывода его из работы и обновления требуют скорейшего внедрения достижений НТП и новых технологий в электроэнергетике.

Для электростанций, работающих на газе, такими технологиями являются: парогазовый цикл, газотурбинные надстройки паросиловых блоков и газовые турбины с утилизацией тепла. На электростанциях, работающих на твердом топливе, - экологически чистые технологии сжигания угля в циркулирующем кипящем слое, а позже - газификация угля с использованием генераторного газа в парогазовых установках. Новые угольные ТЭС в крупных городах, районах концентрированного сосредоточения населения и сельскохозяйственных регионах должны быть оснащены установками сероочистки.

Переход от паротурбинных ТЭС на газе к парогазовым ТЭС обеспечит повышение КПД установок до 50%, а в перспективе - до 60% и более. Вторым направлением повышения тепловой экономичности ТЭС является строительство новых угольных блоков на суперкритические параметры пара с КПД 45-46%. Это позволит существенно снизить удельный расход топлива на выработку электроэнергии на ТЭС на твердом топливе с 360 г. у.т./кВт.ч в 2000 г. до 310 г. у.т./кВт.ч в 2010 г. и до 280 г. у.т./кВт.ч в 2020 г.

Важнейшую роль в снижении расхода топлива, используемого для производства электрической и тепловой энергии в электроэнергетическом секторе, будет играть теплофикация, то есть выработка электроэнергии на ТЭС с утилизацией теплоты, отработавшей в паросиловом, газотурбинном или комбинированном парогазовом цикле.

Важным направлением в электроэнергетике в современных условиях является развитие распределенной генерации на базе строительства электростанций небольшой мощности, в первую очередь небольших ТЭЦ с ПТУ, ГТУ и на других современных технологиях.

Газотурбинные, газопоршневые и парогазовые ТЭЦ, ориентированные на обслуживание потребителей с тепловыми нагрузками малой и средней концентрации (до 10-50 Гкал/ч), получившие название когенерационных, будут обеспечивать в первую очередь децентрализованный сектор теплоснабжения. Кроме этого, часть районных отопительных и промышленных котельных будет реконструирована (где это возможно и экономически оправдано) в ТЭЦ малой мощности.

В результате в процессе развития теплофикации и когенерации будет возрастать доля независимых от АО-энерго производителей электроэнергии и тепла, увеличится конкуренция производителей электрической и тепловой энергии.

Для выполнения инновационной программы отрасли необходимо осуществить комплекс научных исследований и разработок по следующим направлениям:

­ расширение ресурсной базы электроэнергетики и повышение региональной обеспеченности топливом за счет освоения эффективного экологически чистого сжигания канско-ачинских и низкосортных углей восточных районов России в котлах паротрубных энергоблоков на суперкритические параметры пара, в том числе с «кольцевой» топкой, в расплаве шлака, в топках с циркулирующим кипящим слоем и под давлением;

­ повышение эффективности защиты окружающей среды на основе комплексных систем газоочистки и золоулавливания на энергоблоках;

­ повышение эффективности парогазового цикла за счет выбора схемы утилизации тепла;

­ создание и освоение производства энергетических установок нового поколения на базе твердооксидных топливных элементов для централизованного энергоснабжения, исследование возможности применения в этих целях топливных элементов других типов;

­ создание и внедрение в эксплуатацию надежного электротехнического коммутационного оборудования с элегазовой и вакуумной изоляцией;

­ развитие межсистемных электрических передач с повышенной пропускной способностью;

­ развитие гибких электрических передач;

­ внедрение нового поколения трансформаторного оборудования, систем защиты от перенапряжений и микропроцессорных систем РЗ и ПАА, оптоволоконных систем связи;

­ создание и внедрение электротехнического оборудования, включая преобразовательные агрегаты, для частотно-регулируемого электропривода различного назначения;

­ повышение надежности теплоснабжения на базе повышения долговечности и коррозионной стойкости труб тепловых сетей с пенополиуретановой изоляцией.

Гидроресурсы России по своему потенциалу сопоставимы с современными объемами выработки электроэнергии всеми электростанциями страны, однако используются они всего на 15%. Учитывая рост затрат на добычу органического топлива, и, как следствие, ожидаемое значительное увеличение цен на него, необходимо обеспечить максимально возможное использование и развитие гидроэнергетики, являющейся экологически чистым возобновляемым источником электроэнергии. С учетом этого выработка электроэнергии на ГЭС в оптимистическом и благоприятном вариантах возрастет до 180 млрд. кВт.ч в 2010 г. и до 215 млрд. кВт.ч в 2020 г. с дальнейшим увеличением до 350 млрд. кВт.ч за счет сооружения новых ГЭС.

Гидроэнергетика будет развиваться в основном в Сибири и на Дальнем Востоке, обеспечивая практически базисный режим работы тепловым электростанциям этих районов. В европейских районах, где практически исчерпан экономически эффективный потенциал гидроэнергии, получит развитие строительство малых ГЭС, продолжится сооружение некрупных пиковых ГЭС, преимущественно на Северном Кавказе.

Для обеспечения надежного функционирования ЕЭС России и покрытия неравномерного графика потребления электроэнергии в условиях увеличения доли базисных АЭС в европейской части страны необходимо ускорить сооружение ГАЭС.

Развитие сетевого хозяйства, обновление мощности и обеспечение прироста потребности в генерирующей мощности требует кратного роста инвестиций в отрасли.

При этом источниками инвестиций будут:

­ для тепловых генерирующих компаний - собственные средства компаний (амортизационные отчисления и прибыль), заемный и акционерный капитал;

­ для гидрогенерирующих компаний с государственным участием - наряду с указанными источниками возможно создание и использование целевых инвестиционных фондов, формируемых за счет прибыли ГЭС;

­ для федеральной сетевой компании и системного оператора - централизованные инвестиционные средства, включаемые в тарифы на передачу и системные услуги.

Необходимо осуществить модернизацию коммунальной энергетики, в том числе за счет привлечения частного капитала в эту потенциально привлекательную в инвестиционном отношении сферу хозяйственной деятельности на основе реформирования и модернизации всего жилищно-коммунального комплекса Российской Федерации с преобразованием унитарных муниципальных предприятий, обеспечивающих электроснабжение населения и коммунальной сферы городов, в открытые акционерные общества и последующей их интеграцией с предприятиями АО-энерго, включая использование концессионных, арендных и других механизмов управления объектами коммунальной инфраструктуры.

Для привлечения крупномасштабных инвестиций в электроэнергетику требуется коренное реформирование отрасли и соответствующая государственная тарифная политика.

В соответствии с законом «Об электроэнергетике» реформирование электроэнергетики намечено осуществлять на следующих принципах:

­ отнесение передачи, распределения электрической энергии и диспетчеризации к подлежащим государственному регулированию исключительным видам деятельности, осуществление которых возможно только на основании специальных разрешений (лицензий);

­ демонополизация и развитие конкуренции в сфере производства, сбыта и оказания услуг (ремонт, наладка, проектирование и т.д.);

­ обеспечение всем производителям и потребителям электроэнергии равного доступа к инфраструктуре рынка;

­ единство стандартов безопасности, технических норм и правил, действующих в электроэнергетической отрасли;

­ обеспечение финансовой прозрачности рынков электроэнергии и деятельности организаций регулируемых секторов электроэнергетики;

­ обеспечение прав инвесторов, кредиторов и акционеров при проведении структурных преобразований.

Основной задачей проводимых реформ в электроэнергетике является развитие конкуренции в потенциально конкурентных сферах деятельности - генерация и сбыт электроэнергии в тех районах, где это технологически и экономически реализуемо, что в свою очередь создаст условия более эффективной хозяйственной деятельности в сфере генерации, передачи и сбыта электроэнергии. При этом, безусловно, должна быть обеспечена устойчивая и стабильная работа Единой энергетической системы Российской Федерации, надежное электро- и теплоснабжение регионов Российской Федерации.

Основываясь на принципах экономической целесообразности при формировании управленческой стратегии в области электроэнергетики, а также на безусловном исполнении принципов энергетической безопасности Российской Федерации, государство будет поощрять разумное сочетание экспорта / импорта электроэнергии. Импорт электроэнергии на первом этапе реформирования электроэнергетики будет считаться оправданным в тех случаях, когда он будет способствовать недопущению скачкообразного роста тарифов на внутреннем рынке РФ, а также преодолению дефицита в отдельных сегментах оптового рынка на период реконструкции существующих и строительства новых генерирующих мощностей.

Список литературы

электроэнергетика топливный прогнозирование тариф

1. Ф. Котлер «Маркетинг и менеджмент», Питер, 2004

2. Хунгуреева И.П., Шабыкова Н.Э., Унгаева И.Ю. Экономика предприятия: Учебное пособие. - Улан-Удэ, Изд-во ВСГТУ, 2004.

3. Авдашева «теория отраслевых рынков»

4. Журнал «Бизнес и закон» №10/2008

5. Барышев А.В. «Монополизм и антимонопольная политика», 1994.

В начале XXI века вопрос модернизации и развития энергетики России крайне обострился с учетом следующих факторов:

Износ оборудования электростанций, тепловых и электрических сетей к концу первого десятилетия мог превысить 50 %, а это означало, что к 2020 году износ мог достигнуть 90 %;

Технико-экономические характеристики производства и транспорта энергии изобилуют многочисленными очагами непроизводительных затрат первичных энергоресурсов;

Уровень оснащения объектов энергетики средствами автоматики, защит и информатики находится на уровне значительно более низком, чем на объектах энергетики стран Западной Европы и США;

Первичный энергоресурс на ТЭС России используется с КПД не превышающим 32 – 33 %, в отличие от стран, применяющих передовые технологии паросилового цикла с КПД до 50% и выше;

Уже в первом пятилетии XXI века по мере стабилизации экономики России стало очевидным, что энергетика из «локомотива» экономики может превратится в «полосу препятствий». К 2005 г. энергосистема Московского региона стала дефицитной;

Изыскание средств для модернизации и развития энергетической базы России в условиях рыночной экономики и реформирования энергетики, исходя из рыночных принципов.

В этих условиях были созданы несколько программ, однако их дополнения и «развитие» продолжаются.

Вот одна из программ созданных в конце прошлого века (табл. 6).

Таблица 6. Вводы мощностей электростанций, млн. кВт.

Таблица 7. Инвестиционные потребности электроэнергетики, млрд. долл.

Острота положения дел с энергоснабжением экономики России и социальной сферы по оценкам специалистов РАО «ЕЭС России» иллюстрируется появлением энергодефицитных регионов (в осеннее-зимний период максимума нагрузок потребления).

Так возникла энергопрограмма ГОЭЛРО-2. Следует заметить, что в различных источниках приводятся значительно отличные друг от друга показатели. Именно поэтому в предыдущих таблицах (табл. 6, табл. 7) нами приведены максимальные из опубликованных показателей. Очевидно, что этот «потолочный» уровень прогнозов может быть использован как ориентир.

В число основных направлений следует включить:

1. Ориентация на создание ТЭС на твердом топливе. По мере приведения цен на природный газ к уровню мировых, ТЭС на твердом топливе будут экономически обоснованы. Современные методы сжигания угля (в циркулирующем кипящем слое), а далее угольные технологии комбинированного цикла с предварительной газификацией угля или его сжигание в котлах кипящего слоя под давлением позволяют сделать ТЭС на твердом топливе конкурентными на «рынке» ТЭС будущего.

2. Применение «дорогого» природного газа на вновь сооружаемых ТЭС будет обосновано лишь при использовании установок комбинированного цикла, а также при создании мини-ТЭС на базе ГТУ и т.п.

3. Техническое перевооружение существующих ТЭС из-за нарастающего физического и морального износа останется приоритетным направлением. Следует заметить, что при замене узлов и агрегатов появляется возможность внедрения совершенных технических решений, в том числе и в вопросах автоматизации и информатики.

4. Развитие атомной энергетики в ближайшей перспективе связано с завершением строительства блоков высокой готовности, а также проведением работ по продлению срока службы АЭС на экономически оправданный период времени. В более отдаленной перспективе вводы мощностей на АЭС должны вестись путем замены демонтируемых блоков на энергоблоки нового поколения, отвечающие современным требованиям безопасности.

Будущее развитие атомной энергетики обусловлено решением ряда проблем, основными из которых является достижение полной безопасности действующих и новых АЭС, закрытие отработавших свой ресурс АЭС, обеспечение экономической конкурентоспособности атомной энергетики по сравнению с альтернативными энергетическими технологиями.

5. Важным направлением в электроэнергетике для современных условий является развитие сети распределенных генерирующих мощностей путем строительства небольших электростанций, в первую очередь, ТЭЦ небольшой мощности с ПГУ и ГТУ