Газодинамическое напыление. «Оборонка» поделилась методом реставрации металлических изделий Газодинамическое напыление оборудование

По сути, - более продвинутый вариант давно уже зарекомендовавшего себя газотермического способа восстановления различных металлических деталей и поверхностей. Cold Spray или просто ХГН значительно расширяет возможности «горячего» метода обработки изделий.

В настоящее время, бесспорно, это самая передовая технология восстановления и защиты материалов, получившая широкое распространение как в промышленном секторе, так и гражданской сфере.

Принцип действия, плюсы и минусы ХГН

Имеет два основных отличия от газотермического метода реставрации. Во-первых, напыление защитного или восстановительного покрытия происходит при пониженной температуре, не превышающей 150 °С, что в свою очередь не вызывает напряжения в обрабатываемых деталях и их деформации. Во-вторых, «холодная» технология позволяет создавать слой регулируемой толщины и в точно заданных границах. О других плюсах и минусах расскажем чуть позже, а пока об авторах метода и о том, как он работает.

Его разработчиком является «Обнинский центр порошкового напыления» (Россия). Производимое ими оборудование получило название ДИМЕТ ® . Оно сертифицировано по системе ГОСТ Р и защищено патентами России, США, Канады и других стран. В основу технологии заложен принцип сверхзвукового воздействия мельчайшими частицами легкоплавких и других материалов на обрабатываемую поверхность. В основном это полимеры или сплавы карбидов с металлами с размером частиц 0,01-0,5 мкм. Смешиваясь с газом они подаются на изделие со скоростью 500-1000 м/с.

В зависимости от состава расходного материала (порошка) и изменения режимов его нанесения можно получить однородное или композиционное покрытие с твердой или пористой структурой и своей функциональной задачей. Это может быть: восстановление геометрии изделия, упрочнение и защита металла от коррозии, повышение тепло- и электропроводности материала, а также образование износостойкого покрытия, выдерживающего воздействие химически активных сред, высоких тепловых нагрузок и т. д.

Кстати, обнинские инженеры разработали уже несколько модификаций установок ДИМЕТ ® . Учитывая широкую востребованность данного оборудования, сейчас серийно выпускаются как ручные, так и автоматизированные аппараты холодного газодинамического напыления, что позволяет использовать их в промышленности, нефтегазовой отрасли, а также в малом бизнесе для обработки небольших деталей. Тем более, что ничего особо сложного в самой технологии нет. Для работы комплекса (помимо материала для напыления) необходим только сжатый воздух (подается под давлением 0,6-1,0 МПа и расходом 0,3-0,4 м3/мин.) и электросеть напряжением 220 В.

Теперь ещё о преимуществах и недостатках метода. Во-первых, в отличие от газотермического способа ХГН может эффективно применяться при обычном давлении, в любом температурном диапазоне и уровне влажности. В-вторых, он экологически абсолютно безопасен. В-третьих, благодаря большой скорости, может применяться и для абразивной чистки поверхности. Ну, а единственным недостатком технологии является возможность нанесения покрытий только из относительно пластичных металлов, таких как медь, алюминий, цинк, никель и др.

Область применения ХГН

Более подробно хотелось бы остановиться на сферах использования технологии холодного газодинамического напыления порошковыми материалами, чтобы наглядно показать насколько она сегодня востребована.

Устранение дефектов, восстановление поверхностей и герметизация

Всё это - работа, которой могут заниматься даже малые предприятия. К примеру, в небольших мастерских можно ремонтировать детали из легких сплавов (части автомобильной конструкции, допустим), прежде всего, алюминиевых и алюминиевомагниевых. Причем, легко устраняются дефекты, возникшие как в процессе производства, так и в процессе эксплуатации. А отсутствие сильного нагрева и низкая энергетика метода позволяют чинить даже тонкостенные изделия.

Отлично подходит ХГН и для восстановления изношенных поверхностей. Например, такой трудоемкий процесс, как «наращивание» металла в посадочных местах подшипников, теперь могут осуществлять даже малые предприятия, не говоря уже о восстановлении герметизации (когда применение жидких герметиков невозможно) в трубопроводах, теплообменниках или сосудах для рабочих газов, жидкостей.

Очень эффективен в ремонте сложных изделий, где требуется точное восстановление геометрических параметров, устранение скрытых дефектов, но при этом с сохранением всех эксплуатационных характеристик, а также товарного вида. Именно поэтому данный метод активно используется в оборонно-промышленном комплексе, железнодорожной и авиационной промышленности, сельском хозяйстве, газоперекачке и пр.

Не обойтись без этой технологии и в создании контактных площадок. Благодаря возможности легкого нанесения покрытий на любые металлические, керамические и стеклянные поверхности ХГН применяется и в производстве электротехнических изделий. Например, в процессах меднения, создании силовых токонесущих сетей, нанесении токовводов, изготовлении подслоев под пайку и т. д.

Антикоррозийная обработка и устранение глубоких дефектов

Напыление так называемого антифрикционного покрытия - высокоэффективный способ избавления от локальных повреждений (глубоких сколов, задиров, царапин). Это позволяет избежать процедуры полной перезаливки или даже замены изделия, что, естественно, экономически не выгодно.

А в антикорроизонной обработке и защите от высокотемпературной коррозии различных коммуникаций данному методу вообще нет равных. К слову, различные модификации оборудования ДИМЕТ ® обеспечивают качественную обработку внутренней поверхности труб диаметром от 100 мм и длиной до 12 м.

Холодное газодинамическое напыление - новейший метод в области термического напыления. По сравнению с обычными процессами термического напыления холодное газодинамическое напыление имеет особые преимущества, поскольку распыляемый материал не расплавляется и не плавится во время процесса. Таким образом, тепловое воздействие на покрытие и материал подложки остается низким.

Высокая кинетическая энергия частиц и высокая степень деформации при воздействии на подложку, которая связана с ней, позволяет изготавливать однородные и очень плотные покрытия. Диапазон толщины покрытия варьируется от нескольких сотых долей миллиметра до нескольких сантиметров.

В получаемых металлических покрытиях, физические и химические свойства практически не отличаются от свойств базового материала.

Согласно новейшей системной технологии компании «Impact Innovations GmbH» инертный газ - предпочтительно азот или гелий - подается в пистолет-распылитель под давлением до 50 бар (725 фунтов на кв. дюйм) и нагревается до максимальной температуры 1100 °C (2012 °F) в корпусе пистолета.

Последующее расширение нагретого и находящегося под высоким давлением газа в сужающемся-расширяющемся сопле до давления окружающей среды приводит к ускорению технологического инертного газа до сверхзвуковой скорости и в то же время к охлаждению газа до температуры ниже 100 °C (373 °F).

Распыляемые порошки впрыскиваются в сужающуюся часть сопла с помощью устройства подачи порошка и газа-носителя и ускоряются до скорости частиц 1200 м/с в основном газовом потоке.

В сильно суженом сопле распылителя частицы ударяются о необработанные, в большинстве случаев, поверхности компонентов, деформируются и превращаются в сильно адгезионное/когезионное и низкооксидное покрытие.

Воздействие скорости частиц на качество и эффективность покрытия

  1. Частица покрытия достигла минимальной скорости удара, которая необходима для возбуждения механизма взаимодействия с поверхностью подложки (обрабатываемого образца). Эта так называемая «критическая скорость» влияет на свойства материала покрытия.
  2. Поскольку скорость удара выше критической скорости, деформация и качество сцепления частиц возрастают.
  3. Если скорость удара слишком высока («скорость эрозии»), происходит больше разрушения материала, чем его добавления. Покрытие не образуется.
  4. Чтобы образовалось плотное и хорошо сформированное покрытие, значение скорости удара частиц должно быть между значениями критической скорости и скорости эрозии.

Что может быть покрыто методом холодного газодинамического напыления?


Материалы для покрытия

Металлы: например, магний, алюминий, титан, никель, медь, тантал, ниобий, серебро, золото и др.

Сплавы: например, никель-хром, бронза, алюминиевые сплавы, латунь, титановые сплавы, порошки из MCrAlY (сплавы на основе базового металла (Co, Ni, Cr, Fe) с добавлением хрома, алюминия и иттрия) и др.

Смешанные материалы (металлическая матрица в сочетании с твердыми фазами): например, металл и керамика, композиты.

Материалы основы

Металлические изделия и образцы, пластмасса, а также стекло и керамика.

Индивидуальная обработка

Каждый отдельный материал обрабатывается индивидуально.

Обработка материалов требует индивидуальной регулировки температуры и давления газа. Комбинация этих двух физических параметров определяет скорость частиц и качество покрытия. Диапазон оптимальной скорости распыления, ограниченный критической скоростью и скоростью эрозии, называется диапазоном осаждения. В рамках этого диапазона на качество нанесения покрытий влияют параметры.

Газодинамическое напыление металла: цель, назначение, разновидности технологии. Преимущества и недостатки метода. Область применения. Оборудование и особенности применения холодного напыления.

Газодинамическое напыление металла выполняется с целью придания поверхностям металлических и неметаллических изделий необходимых свойств. Это может быть повышение электро- и теплопроводности, прочности, защита от воздействия коррозионных процессов, восстановление геометрических размеров и т. д. При этом в зависимости от конкретной задачи, зависящей от металла изделия, подбирается необходимое оборудование, расходные материалы и технология выполнения напыления. Чаще всего поверхности подлежат металлизации, при этом наносимое покрытие имеет высокую адгезию с материалом, на которую оно наносится, а изделие получается механически прочным. Напыляться могут чисто металлические порошки или смеси, в состав которых, помимо металлической составляющей, вводится керамический порошок в определенных количествах. Это значительно удешевляет технологию получения порошкового покрытия и не сказывается на его свойствах.

Сущность метода холодного газодинамического напыления заключается в нанесении и закреплении на поверхности изделия или детали твердых частиц металла или смеси материалов размером от 0,01 до 50 мкм, разогнанных до необходимой скорости в воздухе, азоте или гелии. Такой материал называют порошковым. Это частицы алюминия, олова, никеля, баббиты разных марок, смесь алюминиевого порошка с цинком. Среда, с помощью которой осуществляют перемещение материала, может быть холодной или подогреваться до температуры не выше 700 °C.

При контакте с поверхностью изделия происходит трансформация пластического типа, а энергия кинематического вида переходит в адгезионную и тепловую, что способствует получению прочного поверхностного слоя металла. Порошок может наноситься не только на металлические поверхности, но и на выполненные из бетона, стекла, керамики, камня, что значительно расширяет область применения способа создания поверхностей с особыми свойствами.


В зависимости от давления различают такие виды холодного газодинамического напыления:
  • высокого;
  • низкого.

В первом случае в качестве рабочей среды, перемещающей порошковый материал размером от 5 до 50 мк, используют гелий и азот. Частицы металла, если они движутся, имеют давление больше 15 атм. Во втором случае используется сжатый воздух, который подается под давлением, не превышающим 10 атм. Различаются эти виды еще и такими показателями, как мощность подогрева и расход рабочей среды.

Этапы напыления следующие:

  • подготовка поверхности изделия к напылению механическим или абразивным способом;
  • нагревание рабочей среды (воздух, азот, гелий) до установленной в технологическом процессе температуры;
  • подача нагретого газа в сопло оборудования вместе с порошком под необходимым давлением.

В результате порошок разгоняется в потоке до сверхзвуковых скоростей и соударяется с поверхностью детали или изделия. Происходит напыление слоя металла толщиной, величина которой зависит от температуры нагрева подаваемого газа и давления.

Подготовку поверхности изделия абразивным способом выполняют, применяя само оборудование для нанесения газодинамического напыления простой сменой параметров режима.

Область применения этого вида напыления довольно обширная. С помощью метода осуществляют герметизацию течей в емкостях и трубопроводах, ремонт деталей и отливок из легких сплавов, наносят электропроводящие, антикоррозионные и антифрикционные покрытия, устраняют механические повреждения, восстанавливают посадочные места в подшипниках.

Главные плюсы метода

К преимуществам технологии относят:
  • выполнение работ при любых климатических условиях (давлении, температуре, влажности);
  • возможность применения оборудования стационарного и переносного типа, что в последнем случае позволяет осуществлять работы по месту их проведения;
  • возможность нанесения покрытия на локальные участки (дефектные места);
  • возможность создания слоев с разными свойствами;
  • возможность создания слоя необходимой толщины или разных по толщине в многослойных покрытиях;
  • процесс не оказывает влияния на структуру изделия, на которое наносится напыление, что является важным преимуществом;
  • безопасность;
  • экологичность.

К недостатку этого вида напыления относят только один факт. Слои можно наносить на пластичные металлы, такие как медь, цинк, алюминий, никель и сплавы на их основе.

Производители разных стран выпускают оборудование стационарного и переносного типа для ручного и автоматизированного нанесения покрытий разной производительности на разные металлы.

Применяемое оборудование

Аппарат газодинамического напыления металла состоит из таких основных частей:
  • емкости для порошка;
  • системы подачи рабочей среды, включая баллон для сжатого газа и все необходимые комплектующие к нему;
  • сопла (как правило, их несколько, они разной конфигурации и применяются для разных режимов напыления);
  • пульта управления.
В РФ качественное оборудование для напыления газодинамическим способом выпускает центр порошкового напыления в Обнинске под товарным знаком «ДИМЕТ». Оно соответствует требованиям отечественных ГОСТов, сертифицировано и защищено патентами во многих странах, включая Россию.

Процесс ремонта детали газодинамическим напылением показан на видео:

Сверхзвуковое холодное газодинамическое напыление (ГДН).

Сущность метода заключается в формировании покрытий за счет высокой кинетической энергии нерасплавленных металлических частиц. В настоящее время данный метод известен как Cold Spray - холодное напыление.

Необходимо отметить, что в наиболее распространенных газотермических способах нанесения покрытий для их формирования из потока частиц необходимо, чтобы падающие на основу частицы имели высокую температуру, обычно выше температуры плавления материала. При газодинамическом напылении это условие не является обязательным, что и обуславливает ее уникальность. В данном случае с твердой основой взаимодействуют частицы, находящиеся в нерасплавленном состоянии, но обладающие очень высокой скоростью.

В противоположность плазменному горячему способу распыления разработан газодинамический метод нанесения покрытий холодным способом, сущность которого заключалась в том, что была установлена некоторая пороговая скорость, при которой холодные пластичные частицы образовывали плотное покрытие. При различной грануляции (крупные и мелкие частицы в едином потоке) более мелкие частицы, имеющие большую скорость, оседали на подложке, а более крупные частицы, имеющие меньшую скорость, отскакивали от поверхности и не участвовали в формировании покрытия.

Такое поведение частиц позволило ввести в поток материала покрытия более крупные частицы абразива. Происходило одновременное опескоструивание и нанесение покрытия. С точки зрения подготовки поверхности, когда ювенильная поверхность подложки теряет свою активность за счет адсорбции газов на поверхности при задержке напыления, такая схема нанесения покрытий является оптимальной. При этом была разработана установка, в которой газ (воздух, азот) при давлении 2,5-3,5 МПа подогревается до 350- 600°С в металлическом змеевике проходящим по нему электрическим током от сварочного трансформатора. Распылитель снабжается соплом Лаваля, обеспечивающим сверхзвуковое истечение двухфазной струи.

На рис. 2.48 представлена схема процесса. Газодинамическое холодное напыление позволяет наносить покрытия из пластичных металлов с добавлением других материалов.

На рис. 2.49 представлены зависимости скорости и температуры газа и частиц по соплу Лаваля для двухфазной струи (азот + твердые частицы меди размером 5 и 25 мкм) при давлении Р = 2,5 МПа и температуре Т 0 = 950°С. При этом отношение выходного диаметра /) в к критическому /) к составляет /) в /Г> к = 9.

Рис. 2.48.


Рис. 2.49. Температура воздуха Т д, скорость воздуха и температуры и скорости медных частиц диаметром 5 и 25 мкм в профилированном сверхзвуковом сопле

Отечественная установка «ДИМЕТ» выпускается Обнинским центром порошкового напыления в двух вариантах - ручном мощностью 2 кВт и стационарном мощностью 7 кВт. Рекомендации по применению порошковых материалов представлены в табл. 2.10.

Основное применение ГДН - это нанесение антикоррозионных покрытий протекторного типа на основе алюминия и цинка. Наносятся износостойкие покрытия на основе пластичных материалов - баббита, меди, никеля и др. По сравнению со способами ГН и ЭДМ, когда металл плавится и насыщается газами, в том числе водородом, ухудшающим протекторные свойства покрытия, ГДН не имеют этих недостатков. Водород не растворяется в твердофазных частицах. Покрытие эффективно защищает сталь от коррозии. Способ нашел широкое применение для защиты кузовов автомобилей от коррозии в области сварочных швов.

Основные

компоненты

покрытия

рабочего

Алюминий, цинк

Герметизация течей в металлических трубках, радиаторах, конденсорах, теплообменниках и т.п., в том числе герметизация течей в сварных швах, ремонт коррозионных и механических повреждений. Герметизация трещин, промоин и других дефектов в алюминиевых, стальных и чугунных деталях

Алюминий, цинк

Восстановление формы металлических деталей. Заполнение каверн, пор, трещин и других дефектов в изделиях из алюминия и его сплавов (в том числе в деталях двигателей, пресс- формах и т.п.). Восстановление посадочных мест подшипников в алюминиевых, стальных и чугунных деталях

Алюминий, карбид кремния

Заполнение каверн, трещин и других дефектов в алюминиевых, стальных и чугунных корпусных деталях двигателя

Оксид алюминия

Очистка и струйно-абразивная подготовка поверхности стали и чугуна для нанесения металлических покрытий

Электропроводящее покрытие (на сталь, алюминий, керамику). Подслой для пайки оловом к алюминиевым, стальным и чугунным деталям

Медь, цинк

Заполнение каверн, трещин и других дефектов в стальных и чугунных корпусных деталях двигателя

Основные

компоненты

покрытия

рабочего

Назначение покрытий, объекты ремонта и восстановления

Антикоррозионная защита. Герметизация дефектов, микротрещин, резьбовых соединений

Жаростойкое покрытие для защиты от высокотемпературной коррозии. Электропроводящее покрытие для контактных площадок электрооборудования

Никель, цинк

Заполнение каверн, прогаров и других дефектов в стальных изделиях.

Для изделий, работающих при высокой температуре

Электропроводящее покрытие для контактных площадок электрооборудования

Антикоррозионная защита стальных деталей и сварных швов на стальных конструкциях

На рис. 2.50 представлена схема установки фирмы Linde (США). Последние достижения в реализации способа - изготовление ручных распылителей, характеристики которых приведены в табл. 2.11.

Таблица 2.11

Характеристики распылителей ГДН

Характеристики

Модель 412

Модель 403

Производительность по А1, г/мин

Число температурных режимов

Габариты (мм) и масса (кг):

блока напыления

450 х 64 х 85 мм; 1,3 кг

450 х 64 х 85 мм; 1,3 кг

340 х 260 х 320 мм; 8 кг

560 х 260 х 490 мм; 16 кг

Характеристики

покрытия:

прочность сцепления, МПа

пористость, %

шероховатость поверхности, мкм

R, = 20-40


Рис. 2.50. Схема установки холодного напыления фирмы Linde:

1 - танкер с сжиженным газом (Аг); 2 - испаритель; 3 - компрессор; 4 - подогреватель воздуха; 5 - порошковый питатель; 6 - распылитель

Низкие требования к ускоряющему газу и малая потребляемая мощность обеспечивают возможность создания портативных установок, использующих технологию «ДИМЕТ».