Математическое моделирование (дополнительные главы математики) - презентация. Основные принципы построения математических моделей Mathcad как средство прикладного программирования

















1 из 16

Презентация на тему: Математические модели (7 класс)

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

§ 2.4. Математические модели Основным языком информационного моделирования в науке является язык математики. Модели, построенные с использованием математических понятий и формул, называются математическими моделями.Математическая модель - информационная модель, в которой параметры и зависимости между ними выражены в математической форме.

№ слайда 3

Описание слайда:

№ слайда 4

Описание слайда:

№ слайда 5

Описание слайда:

Математическое моделирование Метод моделирования дает возможность применять математический аппарат к решению практических задач. Понятия числа, геометрической фигуры, уравнения, являются примерами математических моделей. К методу математического моделирования в учебном процессе приходится прибегать при решении любой задачи с практическим содержанием. Чтобы решить такую задачу математическими средствами, ее необходимо вначале перевести на язык математики (построить математическую модель).

№ слайда 6

Описание слайда:

При математическом моделировании исследование объекта осуществляется посредством изучения модели, сформулированной на языке математики.Пример: нужно определить площадь поверхности стола. Измеряют длину и ширину стола, а затем перемножают полученные числа. Это фактически означает, что реальный объект – поверхность стола – заменяется абстрактной математической моделью прямоугольником. Площадь этого прямоугольника и считается искомой. Из всех свойств стола выделили три: форма поверхности (прямоугольник) и длины двух сторон. Не важны ни цвет стола, ни материал, из которого он сделан, ни то, как он используется. Предположив, что поверхность стола – прямоугольник, легко указать исходные данные и результат. Они связаны соотношением S=ab.

№ слайда 7

Описание слайда:

Рассмотрим пример приведения решения конкретной задачи к математической модели. Через иллюминатор затонувшего корабля требуется вытащить сундук с драгоценностями. Даны некоторые предположения о формах сундука и окнах иллюминатора и исходные данные решения задачи. Предположения:Иллюминатор имеет форму круга. Сундук имеет форму прямоугольного параллелепипеда. Исходные данные: D - диаметр иллюминатора; x - длина сундука; y - ширина сундука; z - высота сундука. Конечный результат: Сообщение: можно или нельзя вытащить.

№ слайда 8

Описание слайда:

Системный анализ условия задачи выявил связи между размером иллюминатора и размерами сундука, учитывая их формы. Полученная в результате анализа информация отобразилась в формулах и соотношениях между ними, так возникла математическая модель.Математической моделью решения этой задачи являются следующие зависимости между исходными данными и результатом:

№ слайда 9

Описание слайда:

Пример 1:Вычислить количество краски для покрытия пола в спортивном зале. Для решения задачи нужно знать площадь пола. Для выполнения этого задания измеряют длину, ширину пола и вычисляют его площадь. Реальный объект – пол зала – занимается прямоугольником, для которого площадь является произведением длины на ширину. При покупке краски выясняют, какую площадь можно покрыть содержимым одной банки, и вычисляют необходимое количество банок.Пусть A – длина пола, B - ширина пола, S1 - площадь, которую можно покрыть содержимым одной банки, N – количество банок. Площадь пола вычисляем по формуле S=A×B, а количество банок, необходимых для покраски зала, N= A×B/S1.

№ слайда 10

Описание слайда:

Пример 2:Через первую трубу бассейн наполняется за 30 часов, через вторую трубу – за 20 часов. За сколько часов бассейн наполнится через две трубы?Решение:Обозначим время заполнения бассейна через первую и вторую трубу А и В соответственно. Примем за 1 весь объём бассейна, искомое время обозначим через t. Так как через первую трубу бассейн наполняется за А часов, то 1/А –часть бассейна, наполняемая первой трубой за 1 час; 1/В - часть бассейна, наполняемая второй трубой за 1 час.Следовательно, скорость наполнения бассейна первой и второй трубами вместе составит: 1/А+1/В.Можно записать: (1/А+1/В)t=1. получили математическую модель, описывающую процесс наполнения бассейна из двух труб. Искомое время можно вычислить по формуле:

№ слайда 11

Описание слайда:

Пример 3:На шоссе расположены пункты А и В, удалённые друг от друга на 20 км. Мотоциклист выехал из пункта В в направлении, противоположном А со скоростью 50 км/ч.Составим математическую модель, описывающую положение мотоциклиста относительно пункта А через t часов.За t часов мотоциклист проедет 50t км и будет находится от А на расстоянии 50t км + 20 км. Если обозначить буквой s расстояние (в километрах) мотоциклиста до пункта А, то зависимость этого расстояния от времени движения можно выразить формулой: S=50t + 20, где t>0.Математической моделью решения этой задачи являются следующие зависимости между исходными данными и результатом: было у Миши х марок; у Андрея 1,5х. Стало у Миши х-8, у Андрея 1,5х+8. По условию задачи 1,5х+8=2(х-8).

№ слайда 12

Описание слайда:

Математической моделью решения этой задачи являются следующие зависимости между исходными данными и результатом: было у Миши х марок; у Андрея 1,5х. Стало у Миши х-8, у Андрея 1,5х+8. По условию задачи 1,5х+8=2(х-8). Математической моделью решения этой задачи являются следующие зависимости между исходными данными и результатом: во втором цехе работают x человек, в первом – 4х, а в третьем - х+50. х+4х+х+50=470. Математической моделью решения этой задачи являются следующие зависимости между исходными данными и результатом: первое число х; второе х+2,5. По условию задачи х/5=(х+2,5)/4.

№ слайда 13

Описание слайда:

Описание слайда:

Источники Информатика и ИКТ: учебник для 7 классаАвтор: Босова Л. Л. Издательство: БИНОМ. Лаборатория знаний, 2009 Формат: 60x90/16 (в пер.), 229 с., ISBN: 978-5-9963-0092-1http://www.lit.msu.ru/ru/new/study (графики, схемы)http://images.yandex.ru (картинки)

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Математическая модель - математическое представление реальности, один из вариантов модели, как системы, исследование которой позволяет получать информацию о некоторой другой системе. Процесс построения и изучения математических моделей называется математическим моделированием. Все естественные и общественные науки, использующие математический аппарат, по сути занимаются математическим моделированием: заменяют объект исследования его математической моделью и затем изучают последнюю. Связь математической модели с реальностью осуществляется с помощью цепочки гипотез, идеализаций и упрощений. С помощью математических методов описывается, как правило, идеальный объект, построенный на этапе содержательного моделирования. Общие сведения

3 слайд

Описание слайда:

Никакое определение не может в полном объёме охватить реально существующую деятельность по математическому моделированию. Несмотря на это, определения полезны тем, что в них делается попытка выделить наиболее существенные черты. По Ляпунову, математическое моделирование - это опосредованное практическое или теоретическое исследование объекта, при котором непосредственно изучается не сам интересующий нас объект, а некоторая вспомогательная искусственная или естественная система (модель), находящаяся в некотором объективном соответствии с познаваемым объектом, способная замещать его в определенных отношениях и дающая при её исследовании, в конечном счете, информацию о самом моделируемом объекте. В других вариантах, математическая модель определяется как объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала, как «„эквивалент“ объекта, отражающий в математической форме важнейшие его свойства - законы, которым он подчиняется, связи, присущие составляющим его частям», как систему уравнений, или арифметических соотношений, или геометрических фигур, или комбинацию того и другого, исследование которых средствами математики должно ответить на поставленные вопросы о свойствах некоторой совокупности свойств объекта реального мира, как совокупность математических соотношений, уравнений, неравенств, описывающих основные закономерности, присущие изучаемому процессу, объекту или системе. Определения

4 слайд

Описание слайда:

Формальная классификация моделей основывается на классификации используемых математических средств. Часто строится в форме дихотомий. Например, один из популярных наборов дихотомий: Линейные или нелинейные модели; Сосредоточенные или распределённые системы; Детерминированные или стохастические; Статические или динамические; Дискретные или непрерывные и так далее. Каждая построенная модель является линейной или нелинейной, детерминированной или стохастической, … Естественно, что возможны и смешанные типы: в одном отношении сосредоточенные (по части параметров), в другом - распределённые модели и т. д. Формальная классификация моделей

5 слайд

Описание слайда:

Наряду с формальной классификацией, модели различаются по способу представления объекта: Структурные или функциональные модели. Структурные модели представляют объект как систему со своим устройством и механизмом функционирования. Функциональные модели не используют таких представлений и отражают только внешне воспринимаемое поведение (функционирование) объекта. В их предельном выражении они называются также моделями «чёрного ящика». Возможны также комбинированные типы моделей, которые иногда называют моделями «серого ящика». Математические модели сложных систем можно разделить на три типа: Модели типа чёрный ящик (феноменологические), Модели типа серый ящик (смесь феноменологических и механистических моделей), Модели типа белый ящик (механистические, аксиоматические). Схематическое представление моделей типа чёрный ящик, серый ящик и белый ящик Классификация по способу представления объекта

6 слайд

Описание слайда:

Практически все авторы, описывающие процесс математического моделирования, указывают, что сначала строится особая идеальная конструкция, содержательная модель. Устоявшейся терминологии здесь нет, и другие авторы называют этот идеальный объект концептуальная модель, умозрительная модель или предмодель. При этом финальная математическая конструкция называется формальной моделью или просто математической моделью, полученной в результате формализации данной содержательной модели (предмодели). Построение содержательной модели может производиться с помощью набора готовых идеализаций, как в механике, где идеальные пружины, твёрдые тела, идеальные маятники, упругие среды и т. п. дают готовые структурные элементы для содержательного моделирования. Однако в областях знания, где не существует полностью завершенных формализованных теорий (передний край физики, биологии, экономики, социологии, психологии, и большинства других областей), создание содержательных моделей резко усложняется. Содержательные и формальные модели

7 слайд

Описание слайда:

В работе Пайерлса дана классификация математических моделей, используемых в физике и, шире, в естественных науках. В книге А. Н. Горбаня и Р. Г. Хлебопроса эта классификация проанализирована и расширена. Эта классификация сфокусирована, в первую очередь, на этапе построения содержательной модели. Гипотеза Модели первого типа - гипотезы («такое могло бы быть»), «представляют собой пробное описание явления, причем автор либо верит в его возможность, либо считает даже его истинным». По Пайерлсу это, например, модель Солнечной системы по Птолемею и модель Коперника (усовершенствованная Кеплером), модель атома Резерфорда и модель Большого Взрыва. Модели-гипотезы в науке не могут быть доказаны раз и навсегда, можно лишь говорить об их опровержении или неопровержении в результате эксперимента. Если модель первого типа построена, то это означает, что она временно признаётся за истину и можно сконцентрироваться на других проблемах. Однако это не может быть точкой в исследованиях, но только временной паузой: статус модели первого типа может быть только временным. Феноменологическая модель Второй тип - феноменологическая модель («ведем себя так, как если бы…»), содержит механизм для описания явления, хотя этот механизм недостаточно убедителен, не может быть достаточно подтверждён имеющимися данными или плохо согласуется с имеющимися теориями и накопленным знанием об объекте. Поэтому феноменологические модели имеют статус временных решений. Считается, что ответ всё ещё неизвестен, и необходимо продолжить поиск «истинных механизмов». Ко второму типу Пайерлс относит, например, модели теплорода и кварковую модель элементарных частиц. Роль модели в исследовании может меняться со временем, может случиться так, что новые данные и теории подтвердят феноменологические модели и те будут повышены до статуса гипотезы. Аналогично новое знание может постепенно прийти в противоречие с моделями-гипотезами первого типа, и те могут быть переведены во второй. Содержательная классификация моделей

8 слайд

Описание слайда:

Так, кварковая модель постепенно переходит в разряд гипотез; атомизм в физике возник как временное решение, но с ходом истории перешёл в первый тип. А вот модели эфира проделали путь от типа 1 к типу 2, а сейчас находятся вне науки. Идея упрощения очень популярна при построении моделей. Но упрощение бывает разным. Пайерлс выделяет три типа упрощений в моделировании. Приближение Третий тип моделей - приближения («что-то считаем очень большим или очень малым»). Если можно построить уравнения, описывающие исследуемую систему, то это не значит, что их можно решить даже с помощью компьютера. Общепринятый прием в этом случае - использование приближений (моделей типа 3). Среди них модели линейного отклика. Уравнения заменяются линейными. Стандартный пример - закон Ома. Если мы используем модель идеального газа для описания достаточно разреженных газов, то это - модель типа 3 (приближение). При более высоких плотностях газа тоже полезно представлять себе более простую ситуацию с идеальным газом для качественного понимания и оценок, но тогда это уже тип 4. Упрощение Четвёртый тип - упрощение («опустим для ясности некоторые детали»), в такой отбрасываются детали, которые могут заметно и не всегда контролируемо повлиять на результат. Одни и те же уравнения могут служить моделью типа 3 (приближение) или 4 (опустим для ясности некоторые детали) - это зависит от явления, для изучения которого используется модель. Так, если модели линейного отклика применяются при отсутствии более сложных моделей (то есть не производится линеаризация нелинейных уравнений, а просто ищутся линейные уравнения, описывающие объект), то это уже феноменологические линейные модели, и относятся они к следующему типу 4 (все нелинейные детали «для ясности» опускаем). Примеры: применение модели идеального газа к неидеальному, уравнение состояния Ван-дер-Ваальса, большинство моделей физики твердого тела, жидкостей и ядерной физики. Путь от микроописания к свойствам тел (или сред), состоящих из большого числа частиц, Содержательная классификация моделей (продолжение)

9 слайд

Описание слайда:

очень длинен. Приходится отбрасывать многие детали. Это приводит к моделям четвёртого типа. Эвристическая модель Пятый тип - эвристическая модель («количественного подтверждения нет, но модель способствует более глубокому проникновению в суть дела»), такая модель сохраняет лишь качественное подобие реальности и даёт предсказания только «по порядку величины». Типичный пример - приближение средней длины свободного пробега в кинетической теории. Оно даёт простые формулы для коэффициентов вязкости, диффузии, теплопроводности, согласующиеся с реальностью по порядку величины. Но при построении новой физики далеко не сразу получается модель, дающая хотя бы качественное описание объекта - модель пятого типа. В этом случае часто используют модель по аналогии, отражающую действительность хоть в какой-нибудь черте. Аналогия Тип шестой - модель-аналогия («учтём только некоторые особенности»). Пайерлс приводит историю использования аналогий в первой статье Гейзенберга о природе ядерных сил. Мысленный эксперимент Седьмой тип моделей - мысленный эксперимент («главное состоит в опровержении возможности»). Такой тип моделирования часто использовался Эйнштейном, в частности, один из таких экспериментов привёл к построению специальной теории относительности. Предположим, что в классической физике мы движемся за световой волной со скоростью света. Мы будем наблюдать периодически меняющееся в пространстве и постоянное во времени электромагнитное поле. Согласно уравнениям Максвелла, этого быть не может. Отсюда Эйнштейн заключил: либо законы природы меняются при смене системы отсчёта, либо скорость света не зависит от системы отсчёта, и выбрал второй вариант. Демонстрация возможности Восьмой тип - демонстрация возможности («главное - показать внутреннюю непротиворечивость возможности»), такого рода модели тоже мысленные эксперименты с воображаемыми сущностями, демонстрирующие, что предполагаемое явление согласуется с базовыми принципами и Содержательная классификация моделей (продолжение)

10 слайд

Описание слайда:

внутренне непротиворечиво. В этом основное отличие от моделей типа 7, которые вскрывают скрытые противоречия. Один из самых знаменитых таких экспериментов - геометрия Лобачевского. (Лобачевский называл её «воображаемой геометрией».) Другой пример - массовое производство формально-кинетических моделей химических и биологических колебаний, автоволн. Парадокс Эйнштейна - Подольского - Розена был задуман как мысленный эксперимент для демонстрации противоречивости квантовой механики, но незапланированным образом со временем превратился в модель 8 типа - демонстрацию возможности квантовой телепортации информации. В основе содержательной классификации - этапы, предшествующие математическому анализу и вычислениям. Восемь типов моделей по Пайерлсу суть восемь типов исследовательских позиций при моделировании. Содержательная классификация моделей (продолжение)

11 слайд

Описание слайда:

12 слайд

Описание слайда:

фактически бесполезной. Зачастую более простая модель позволяет лучше и глубже исследовать реальную систему, чем более сложная (и, формально, «более правильная»). Если применять модель гармонического осциллятора к объектам, далёким от физики, её содержательный статус может быть другим. Например, при приложении этой модели к биологическим популяциям её следует отнести, скорее всего, к типу 6 аналогия («учтём только некоторые особенности»). Пример (продолжение)

13 слайд

Описание слайда:

14 слайд

Описание слайда:

Важнейшие математические модели обычно обладают важным свойством универсальности: принципиально разные реальные явления могут описываться одной и той же математической моделью. Скажем, гармонический осциллятор описывает не только поведение груза на пружине, но и другие колебательные процессы, зачастую имеющие совершенно иную природу: малые колебания маятника, колебания уровня жидкости в U-образном сосуде или изменение силы тока в колебательном контуре. Таким образом, изучая одну математическую модель, мы изучаем сразу целый класс описываемых ею явлений. Именно этот изоморфизм законов, выражаемых математическими моделями в различных сегментах научного знания, подвиг Людвига фон Берталанфи на создание «общей теории систем». Универсальность моделей

15 слайд

Описание слайда:

Существует множество задач, связанных с математическим моделированием. Во-первых, надо придумать основную схему моделируемого объекта, воспроизвести его в рамках идеализаций данной науки. Так, вагон поезда превращается в систему пластин и более сложных тел из разных материалов, каждый материал задается как его стандартная механическая идеализация (плотность, модули упругости, стандартные прочностные характеристики), после чего составляются уравнения, по дороге какие-то детали отбрасываются как несущественные, производятся расчёты, сравниваются с измерениями, модель уточняется, и так далее. Однако для разработки технологий математического моделирования полезно разобрать этот процесс на основные составные элементы. Традиционно выделяют два основных класса задач, связанных с математическими моделями: прямые и обратные. Прямая задача: структура модели и все её параметры считаются известными, главная задача - провести исследование модели для извлечения полезного знания об объекте. Какую статическую нагрузку выдержит мост? Как он будет реагировать на динамическую нагрузку (например, на марш роты солдат, или на прохождение поезда на различной скорости), как самолёт преодолеет звуковой барьер, не развалится ли он от флаттера, - вот типичные примеры прямой задачи. Постановка правильной прямой задачи (задание правильного вопроса) требует специального мастерства. Если не заданы правильные вопросы, то мост может обрушиться, даже если была построена хорошая модель для его поведения. Так, в 1879 г. в Великобритании обрушился металлический железнодорожный мост через реку Тей, конструкторы которого построили модель моста, рассчитали его на 20-кратный запас прочности на действие полезной нагрузки, но забыли о постоянно дующих в тех местах ветрах. И через полтора года он рухнул. В простейшем случае (одно уравнение осциллятора, например) прямая задача очень проста и сводится к явному решению этого уравнения. Обратная задача: известно множество возможных моделей, надо выбрать конкретную модель на основании дополнительных данных Прямая и обратная задачи математического моделирования

Основы математического моделирования

С.В. Звонарев
Основы математического
моделирования
Лекция № 2. Математические модели и их классификации
Екатеринбург
2012

Цель лекции

Определить понятие математической модели.
Изучить обобщенную математическую модель.
Рассмотреть классификацию математических моделей.
2 Математическая модель.
Обобщенная математическая модель.
.
Степень соответствия математической модели объекту.
Классификация математических моделей.
3

Математическая модель

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ
4

Математическая модель

Математической моделью называется совокупность уравнений
или других математических соотношений, отражающих основные
свойства изучаемого объекта или явления в рамках принятой
умозрительной
физической
модели
и
особенности
его
взаимодействия с окружающей средой.
Основными свойствами математических моделей являются:
адекватность;
простота.
Процесс формулировки математической модели называется
постановкой задачи.
Математическая модель является математическим аналогом
проектируемого объекта. Степень адекватности ее объекту
определяется постановкой и корректностью решений задачи
проектирования.
5

Математическое моделирование

Математическая модель технического объекта –
совокупность математических уравнений и отношений
между ними, которая адекватно отражает свойства
исследуемого объекта, интересующие исследователя
(инженера).
Математическое моделирование – это идеальное
научное знаковое формальное моделирование, при котором
описание объекта осуществляется на языке математики, а
исследование модели проводится с использованием тех или
иных математических методов.
Методы отыскания экстремума функции многих
переменных с различными ограничениями часто
называются
методами
математического
программирования.
6

Обобщенная математическая модель

Элементы обобщенной математической модели:
множество входных данных (переменные) X,Y;
математический оператор L;
множество выходных данных (переменных) G(X,Y).
7

Входные данные

X – множество варьируемых переменных, которое
образует пространство варьируемых параметров Rx
(пространство поиска), являющееся метрическим с
размерностью
n,
равной
числу
варьируемых
параметров.
Y – множество независимых переменных (константы),
которое образует метрическое пространство входных
данных Ry. В том случае, когда каждый компонент
пространства Ry задается диапазоном возможных
значений,
множество
независимых
переменных
отображается
некоторым
ограниченным
подпространством пространства Ry.
8

Независимые переменные Y

Они определяют среду функционирования объекта, т.е.
внешние
условия,
в
которых
будет
работать
проектируемый объект. К ним могут относиться:
технические параметры объекта, не подлежащие
изменению в процессе проектирования;
физические
возмущения среды,
взаимодействует объект проектирования;
с
которой
тактические параметры, которые должен достигать
объект проектирования.
9

Математические оператор и выходные данные

Математический оператор L – полная система
математических операций, описывающих численные или
логические соотношения между множествами входных и
выходных данных (переменные). Он определяющий
операции над входными данными.
Множество выходных данных (переменных) G(X,Y)
представляет собой совокупность критериальных функций,
включающую (при необходимости) целевую функцию.
Выходные данные рассматриваемой обобщенной модели
образуют метрическое пространство критериальных
показателей RG.
10

Нелинейность математических моделей

Нелинейность математических моделей
‒ нарушение принципа
суперпозиции, т.е. когда любая линейная комбинация решений не
является решением задачи. Таким образом знание о поведении части
объекта еще не гарантирует знания поведения всего объекта.
Большинство
реальных
процессов
и
соответствующих
им
математических моделей не линейны. Линейные же модели отвечают
весьма частным случаям и, как правило, служат лишь первым
приближением к реальности.
Пример – популяционные модели сразу становятся нелинейными,
если принять во внимание ограниченность доступных популяции
ресурсов.
11

Степень соответствия математических моделей объекту

Сложности:
Математическая модель никогда не бывает тождественна
рассматриваемому объекту и не передает всех его свойств и
особенностей.
Математическая модель является приближенным описанием
объекта и носит всегда приближенный характер.
Точность соответствия определяется степенью соответствия,
адекватности модели и объекта. Способы:
Использование эксперимента (практики) для сравнения моделей и
выбора из них наиболее подходящей.
Унификация математических моделей за счет накопления наборов
готовых моделей.
Перенос готовых моделей из одних процессов на другие,
идентичные, аналогичные.
Использование минимального количества приближений и учет
возмущающих воздействий.
12

Классификация математических моделей

КЛАССИФИКАЦИЯ
МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ
13

Классы математических моделей

Математические модели подразделяют на классы в
зависимости от:
сложности объекта моделирования;
оператора модели;
входных и выходных параметров;
цели моделирования;
способа исследования модели;
объектов исследования;
принадлежности модели к иерархическому уровню
описания объекта;
характера отображаемых свойств;
порядка расчета;
использования управления процессом.
14

Классификация по сложности объекта

В
простых
моделях
при
моделировании
не
рассматривается внутреннее строение объекта, не
выделяются
составляющие
его
элементы
или
подпроцессы.
Объект система соответственно более сложная система,
представляющая собой совокупность взаимосвязанных
элементов, обособленная от окружающей среды и
взаимодействующая с ней как целое.
15

Классификация по оператору модели

Математическую
модель
называют
линейной, если оператор обеспечивает
линейную
зависимость
выходных
параметров
от
значений
входных
параметров.
Математическую
модель
называют
нелинейной, если оператор обеспечивает
нелинейную
зависимость
выходных
параметров
от
значений
входных
параметров.
Математическая модель простая, если оператор модели является
алгебраическим
выражением,
отражающим
функциональную
зависимость выходных параметров от входных.
Модель, включающая системы дифференциальных и интегральных
соотношений, называется сложной.
Модель называется алгоритмической когда удается построить
некоторый имитатор поведения и свойств объекта с помощью алгоритма.
16

Классификация по входным и выходным параметрам

17

Классификация по характеру моделируемого процесса

Детерминированные,
которые
соответствуют
детерминированным процессам, имеющим строго
однозначную связь между физическими величинами,
характеризующими состояние системы в какой-либо
момент
времени.
Детерминированная
модель
позволяет однозначно вычислить и предсказать
значения выходных величин по значениям входных
параметров и управляющих воздействий.
Неопределенные, которые исходят из того, что
изменение определяющих величин происходит
случайным образом, и значения выходных величин
находятся в вероятностном соответствии с входными
величинами и не определяются однозначно.
18

Неопределенные модели

Стохастические – значения всех или отдельных параметров
модели определяются случайными величинами, заданными
плотностями вероятности.
Случайные – значения всех или отдельных параметров модели
устанавливаются случайными величинами, заданными оценками
плотностей вероятности, полученными в результате обработки
ограниченной экспериментальной выборки данных параметров.
Интервальные – значения всех или отдельных параметров
модели описываются интервальными величинами, заданными
интервалом, образованным минимальным и максимально
возможными значениями параметра.
Нечеткие – значения всех или отдельных параметров модели
описываются функциями принадлежности соответствующему
нечеткому множеству.
19

Классификация по отношению к размерности пространства

Одномерные.
Двумерные.
Трехмерные.
Такое деление применимо для моделей, в число
параметров
которых
входят
координаты
пространства.
20

Классификация по отношению ко времени

Статические. Если состояние системы не

статическими. Статическое моделирование
служит для описания состояния объекта в
фиксированный момент времени.
Динамические. Если состояние системы
меняется со временем, то модели называют
динамическими. Динамическое моделирование
служит для исследования объекта во времени.
21

Классификация по виду используемых множеств параметров

Качественные.
Количественные.
Дискретные.
Непрерывные.
Смешанные.
22

Классификация по целям моделирования

Дескриптивные. Целью таких моделей является установление законов
изменения параметров модели. Пример – модель движения ракеты после
старта с поверхности Земли.
Оптимизационные. Подобные модели предназначены для определения
оптимальных с точки зрения некоторого критерия параметров
моделируемого объекта или же для поиска оптимального режима
управления некоторым процессом. Примером подобной модели может
служить моделирование процесса запуска ракеты с поверхности Земли с
целью подъема ее на заданную высоту за минимальное время.
Управленческие. Такие модели применяются для принятия эффективных
управленческих решений в различных областях целенаправленной
23
деятельности человека.

Классификация по методу реализации

Аналитические. Аналитические методы более удобны для
последующего анализа результатов, но применимы лишь для
относительно простых моделей. В случае, если математическая
задача допускает аналитическое решение, то оно считается
предпочтительнее численного.
Алгоритмические. Алгоритмические методы сводятся к
некоторому
алгоритму,
реализующему
вычислительный
24
эксперимент с использованием ЭВМ.

Классификация по объектам исследования

Объекты с высокой степенью информации. если в процессе
моделирования известны полные системы уравнений,
описывающие все стороны моделируемого процесса и все
числовые значения параметров этих уравнений.
Объекты с нулевым уровнем информации. Математическая
модель такого объекта строится на основе статистических
экспериментальных данных.
Объекты с известными основными закономерностями.
Значения констант в математических уравнениях описания
модели устанавливают из опыта.
Объекты, о поведении которых имеются сведения
эмпирического характера. Для них используют методы
физического моделирования с применением математического
планирования эксперимента.
25

Классификация по принадлежности модели к иерархическому уровню описания объекта

Микроуровень
(типовыми
процессами
являются
массообменные,
теплофизические,
гидродинамические).
Моделирование
осуществляется
в
целях
синтеза
технологического процесса для отдельного или нескольких
агрегатов.
Макроуровень. Моделирование процессов, имеющих более
высокий уровень агрегации; модели применяют для синтеза
текущего управления технологическим процессом для одного
агрегата или технологического комплекса в целом.
Метауровень. Моделирование процессов в совокупности
агрегатов и связывающих их материально-энергетических
потоков. Такие модели служат для синтеза технологического
комплекса как единого целого, то есть для синтеза управления
развитием.
26

Классификация по характеру отображаемых свойств модели

Функциональные
модели.
Используются,
для
описания
физических и информационных процессов, протекающих при
функционировании объекта.
Структурные
модели.
Описывают
состав
и
взаимосвязи
элементов системы (процесса, объекта).
27

Классификация по порядку расчета

Прямые. Применяются для определения кинетических,
статических и динамических закономерностей процессов.
Обратные
(инверсионные).
Используются
для
определения значения входных параметров или других
заданных свойств обрабатываемых веществ или
продуктов, а также для определения допустимых
отклонений режимов обработки (задачи оптимизации
процессов и параметров аппаратов).
Индуктивные.
Применяются
для
уточнения
математических уравнений кинетики, статики или
динамики процессов с использованием новых гипотез или
теорий.
28

Классификация по использованию управления процессом

Модели прогноза, или расчетные модели без управления.
Основное назначение этих моделей – дать прогноз о поведении
системы во времени и в пространстве, зная начальное состояние
и информацию о поведении ее на границе. Примеры -модели
распределения тепла, электрического поля, химической
кинетики, гидродинамики.
Оптимизационные модели.
– Стационарные модели. Используются на уровне проектирования
различных
технологических
систем.
Примеры

детерминированные задачи, вся входная информация в которых
является полностью определяемой.
– Нестационарные
модели.
Используются
на
уровне
проектирования, так и, главным образом, для оптимального
управления различными процессами – технологическими,
экономическими и др. В этих задачах некоторые параметры носят
случайный характер или содержат элемент неопределенности.
29 Гипотеза.
Феноменологическая модель.
Приближение.
Упрощение.
Эвристическая модель.
Аналогия.
Мысленный эксперимент.
Демонстрация возможности.
30

Гипотеза

Эти модели представляют собой пробное
описание явления. Если такая модель построена, то
это означает, что она временно признается за истину
и можно сконцентрироваться на других проблемах.
Однако это не может быть точкой в исследованиях, а
только временной паузой: статус модели может быть
только временным.
Примеры:
Модель Солнечной системы по Птолемею.
Модель Коперника (усовершенствованная Кеплером).
Модель атома Резерфорда.
Модель Большого Взрыва.
и д.р.
31

Феноменологическая модель

Данная модель содержит механизм для описания явления.
Однако этот механизм недостаточно убедителен и не может быть
подтвержден имеющимися данными или плохо согласуется с
имеющимися теориями и накопленным знанием об объекте.
Поэтому феноменологические модели имеют статус временных
решений. Роль модели в исследовании может меняться со
временем, может случиться так, что новые данные и теории
подтвердят феноменологические модели и те будут повышены до
статуса гипотезы. Аналогично, новое знание может постепенно
придти в противоречие с моделями-гипотезами первого типа и те
могут быть переведены во второй.
Примеры:
Модель теплорода.
Кварковая модель элементарных частиц.
и д.р.
32

Приближение

Общепринятый прием в случае когда нельзя
решить даже с помощью компьютера уравнения,
описывающие исследуемую систему – использование
приближений. Уравнения заменяются линейными.
Стандартный пример – закон Ома.
33

Упрощение

В данной модели отбрасываются детали, которые
могут заметно и не всегда контролируемо повлиять на
результат.
Примеры:
Применение модели идеального газа к неидеальному.
Уравнение состояния Ван-дер-Ваальса.
Большинство моделей физики твердого тела,
жидкостей и ядерной физики. Путь от микроописания к
свойствам тел (или сред), состоящих из большого числа
частиц, очень длинен. Приходится отбрасывать многие
детали.
34

Эвристическая модель

Эвристическая модель сохраняет лишь качественное
подобие реальности и дает предсказания только «по
порядку величины».
Оно дает простые формулы для коэффициентов
вязкости, диффузии, теплопроводности, согласующиеся
с реальностью по порядку величины. Но при
построении новой физики далеко не сразу получается
модель, дающая хотя бы качественное описание объекта.
Типичный пример – приближение средней длины
свободного пробега в кинетической теории.
35

Аналогия

Данная
модель
впервые
возникла,
когда
взаимодействие в системе нейтрон-протон пытались
объяснить посредством взаимодействия атома
водорода с протоном. Эта аналогия и привела к
заключению, что должны существовать обменные
силы взаимодействия между нейтроном и протоном,
обусловленным переходом электрона между двумя
протонами.
36

Мысленный эксперимент и демонстрация возможности

Мысленный эксперимент – это рассуждения,
которые в конечном итоге приводят к противоречию.
Демонстрация возможности – это тоже мысленные
эксперименты
с
воображаемыми
сущностями,
демонстрирующие,
что
предполагаемое
явление
согласуется с базовыми принципам и внутренне
непротиворечиво. Один из самых знаменитых таких
экспериментов – геометрия Лобачевского.
37

Заключение и выводы

Рассмотрено понятие математической модели.
Изучена обобщенная математическая модель.
Определены понятия: нелинейность математических моделей и степень
соответствия математической модели объекту.
Представлена классификация математических моделей.
38 Самарский, А.А. Математическое моделирование / А.А. Самарский,
А.П. Михайлов. – М.: Наука. Физматлит, 1997.
Тарасевич, Н.Н. Математическое и компьютерное моделирование.
Вводный курс / Н.Н. Тарасевич. – М.: Эдиториал УРСС, 2001.
Введение в математическое моделирование: уч. Пособие / под
редакцией П.В. Трусова. – М.: Университетская книга, Логос, 2007. –
440 с.

Слайд 3

Математическоемоделирование

это приближённое описание какого-нибудь класса явлений, выраженное на языке какой-нибудь математической теории (с помощью системы алгебраических уравнений и неравенств, дифференциальных или интегральных уравнений, функций, системы геометрических предложений, векторов и т.п.).

Слайд 4

Классификация моделей

Формальная классификация моделей Формальная классификация моделей основывается на классификации используемых математических средств. Часто строится в форме дихотомий. Например, один из популярных наборов дихотомий: Линейные или нелинейные модели[; Сосредоточенные или распределённые системы; Детерминированные или стохастические; Статические или динамические; Дискретные или непрерывные. и так далее. Каждая построенная модель является линейной или нелинейной, детерминированной или стохастической, … Естественно, что возможны и смешанные типы: в одном отношении сосредоточенные (по части параметров), в другом - распределённые модели и т. д.

Слайд 5

Классификация по способу представления объекта Структурныеили функциональные модели Структурные модели представляют объект как систему со своим устройством и механизмом функционирования. Функциональные модели не используют таких представлений и отражают только внешне воспринимаемое поведение (функционирование) объекта. В их предельном выражении они называются также моделями «чёрного ящика». Возможны также комбинированные типы моделей, которые иногда называют моделями «серого ящика».

Слайд 6

Содержательные и формальные модели Практически все авторы, описывающие процесс математического моделирования, указывают, что сначала строится особая идеальная конструкция, содержательная модель. А финальная математическая конструкция называется формальной моделью или просто математической моделью, полученной в результате формализации данной содержательной модели. Построение содержательной модели может производиться с помощью набора готовых идеализаций, то есть дают готовые структурные элементы для содержательного моделирования.

Слайд 7

Слайд 8

Тип 1: Гипотеза (такое могло бы быть)

Эти модели «представляют собой пробное описание явления, причем автор либо верит в его возможность, либо считает даже его истинным». Никакая гипотеза в науке не бывает доказана раз и навсегда. Очень чётко это сформулировал Ричард Фейнман: Если модель первого типа построена, то это означает, что она временно признаётся за истину и можно сконцентрироваться на других проблемах. Однако это не может быть точкой в исследованиях, но только временной паузой: статус модели первого типа может быть только временным.

Слайд 9

Тип 2: Феноменологическая модель (ведем себя так, как если бы…)

Феноменологические модели имеют статус временных решений. Считается, что ответ всё ещё неизвестен и необходимо продолжить поиск «истинных механизмов». Роль модели в исследовании может меняться со временем, может случиться так, что новые данные и теории подтвердят феноменологические модели и те будут повышены до статуса гипотезы. Аналогично, новое знание может постепенно прийти в противоречие с моделями-гипотезами первого типа и те могут быть переведены во второй.

Слайд 10

Тип 3: Приближение(что-то считаем очень большим или очень малым)

Если можно построить уравнения, описывающие исследуемую систему, то это не значит, что их можно решить даже с помощью компьютера. Общепринятый прием в этом случае - использование приближений (моделей типа 3). Среди них модели линейного отклика. Уравнения заменяются линейными.

Слайд 11

Тип 4: Упрощение(опустим для ясности некоторые детали)

В модели типа 4 отбрасываются детали, которые могут заметно и не всегда контролируемо повлиять на результат. Одни и те же уравнения могут служить моделью типа 3 (приближение) или 4 (опустим для ясности некоторые детали) - это зависит от явления, для изучения которого используется модель. Так, если модели линейного отклика применяются при отсутствии более сложных моделей, то это уже феноменологические линейные модели.

Слайд 12

Тип 5: Эвристическая модель (количественного подтверждения нет, но модель способствует более глубокому проникновению в суть дела)

Эвристическая модель сохраняет лишь качественное подобие реальности и даёт предсказания только «по порядку величины». Оно даёт простые формулы для коэффициентов вязкости, диффузии, теплопроводности, согласующиеся с реальностью по порядку величины.

Слайд 13

Тип 6: Аналогия (учтём только некоторые особенности)

Подобие, равенство отношений; сходство предметов, явлений, процессов, величин..., в каких-либо свойствах, а также познание с учетом только некоторых особенностей.

Слайд 14

Тип 7: Мысленный эксперимент(главное состоит в опровержении возможности)

вид познавательной деятельности, в которой ключевая для той или иной научной теории ситуация разыгрывается не в реальном эксперименте, а в воображении. В некоторых случаях мысленный эксперимент обнаруживает противоречия теории и «обыденного сознания», что далеко не всегда является свидетельством неверности теории

Слайд 15

Тип 8: Демонстрация возможности (главное - показать внутреннюю непротиворечивость возможности)

Это тоже мысленные эксперименты с воображаемыми сущностями, демонстрирующие, что предполагаемое явление согласуется с базовыми принципам и внутренне непротиворечиво. В этом основное отличие от моделей типа 7, которые вскрывают скрытые противоречия. В основе содержательной классификации - этапы, предшествующие математическому анализу и вычислениям. Восемь типов моделей по Р. Пайерлсу суть восемь типов исследовательских позиций при моделировании.

Слайд 16

Основные этапы математического моделирования

1. Построение модели. На этом этапе задается некоторый «нематематический» объект - явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

Слайд 17

2. Решение математической задачи, к которой приводит модель. На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время. 3. Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

Слайд 18

4. Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности. 5. Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

Слайд 19

При этом должны соблюдаться следующие требования:

модель должна адекватно отражать наиболее существенные (с точки зрения определенной постановки задачи) свойства объекта, отвлекаясь от несущественных его свойств; модель должна иметь определенную область применимости, обусловленную принятыми при её построении допущениями; модель должна позволять получать новые знания об изучаемом объекте.

Слайд 20

СПАСИБО ЗА ВНИМАНИЕ

Посмотреть все слайды

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Математические модели

05.05.17 Математические модели Основным языком информационного моделирования в науке является язык математики. Модели, построенные с использованием математических понятий и формул, называются математическими моделями. Математическая модель - информационная модель, в которой параметры и зависимости между ними выражены в математической форме.

05.05.17 Например, известное уравнение S=vt, где S - расстояние, v - скорость t - время, представляет собой модель равномерного движения, выраженную в математической форме.

05.05.17 Рассматривая физическую систему: тело массой m , скатывающееся по наклонной плоскости с ускорением a под воздействием силы F , Ньютон получил соотношение F = mа. Это математическая модель физической системы.

05.05.17 Метод моделирования дает возможность применять математический аппарат к решению практических задач. Понятия числа, геометрической фигуры, уравнения, являются примерами математических моделей. К методу математического моделирования в учебном процессе приходится прибегать при решении любой задачи с практическим содержанием. Чтобы решить такую задачу математическими средствами, ее необходимо вначале перевести на язык математики (построить математическую модель). Математическое моделирование

05.05.17 При математическом моделировании исследование объекта осуществляется посредством изучения модели, сформулированной на языке математики. Пример: нужно определить площадь поверхности стола. Измеряют длину и ширину стола, а затем перемножают полученные числа. Это фактически означает, что реальный объект – поверхность стола – заменяется абстрактной математической моделью прямоугольником. Площадь этого прямоугольника и считается искомой. Из всех свойств стола выделили три: форма поверхности (прямоугольник) и длины двух сторон. Не важны ни цвет стола, ни материал, из которого он сделан, ни то, как он используется. Предположив, что поверхность стола – прямоугольник, легко указать исходные данные и результат. Они связаны соотношением S = ab .

05.05.17 Рассмотрим пример приведения решения конкретной задачи к математической модели. Через иллюминатор затонувшего корабля требуется вытащить сундук с драгоценностями. Даны некоторые предположения о формах сундука и окнах иллюминатора и исходные данные решения задачи. Предположения: Иллюминатор имеет форму круга. Сундук имеет форму прямоугольного параллелепипеда. Исходные данные: D - диаметр иллюминатора; x - длина сундука; y - ширина сундука; z - высота сундука. Конечный результат: Сообщение: можно или нельзя вытащить.

05.05.17 Если, то сундук можно вытащить, а если, то нельзя. Системный анализ условия задачи выявил связи между размером иллюминатора и размерами сундука, учитывая их формы. Полученная в результате анализа информация отобразилась в формулах и соотношениях между ними, так возникла математическая модель. Математической моделью решения этой задачи являются следующие зависимости между исходными данными и результатом:

05.05.17 Пример 1: Вычислить количество краски для покрытия пола в спортивном зале. Для решения задачи нужно знать площадь пола. Для выполнения этого задания измеряют длину, ширину пола и вычисляют его площадь. Реальный объект – пол зала – занимается прямоугольником, для которого площадь является произведением длины на ширину. При покупке краски выясняют, какую площадь можно покрыть содержимым одной банки, и вычисляют необходимое количество банок. Пусть A – длина пола, B - ширина пола, S 1 - площадь, которую можно покрыть содержимым одной банки, N – количество банок. Площадь пола вычисляем по формуле S = A×B , а количество банок, необходимых для покраски зала, N = A×B / S 1 .

05.05.17 Пример 2: Через первую трубу бассейн наполняется за 30 часов, через вторую трубу – за 20 часов. За сколько часов бассейн наполнится через две трубы? Решение: Обозначим время заполнения бассейна через первую и вторую трубу А и В соответственно. Примем за 1 весь объём бассейна, искомое время обозначим через t. Так как через первую трубу бассейн наполняется за А часов, то 1/А –часть бассейна, наполняемая первой трубой за 1 час; 1/В - часть бассейна, наполняемая второй трубой за 1 час. Следовательно, скорость наполнения бассейна первой и второй трубами вместе составит: 1/А+1/В. Можно записать: (1/А+1/В) t =1 . получили математическую модель, описывающую процесс наполнения бассейна из двух труб. Искомое время можно вычислить по формуле:

05.05.17 Пример 3: На шоссе расположены пункты А и В, удалённые друг от друга на 20 км. Мотоциклист выехал из пункта В в направлении, противоположном А со скоростью 50 км/ч. Составим математическую модель, описывающую положение мотоциклиста относительно пункта А через t часов. За t часов мотоциклист проедет 50 t км и будет находится от А на расстоянии 50 t км + 20 км. Если обозначить буквой s расстояние (в километрах) мотоциклиста до пункта А, то зависимость этого расстояния от времени движения можно выразить формулой: S=50t + 20 , где t>0 .

05.05.17 Первое число равно x , а второе на 2,5 больше первого. Известно, что 1/5 первого числа равна 1/4 второго. Составьте математические модели данных ситуаций: У Миши x марок, а у Андрея в полтора раз больше. Если Миша отдаст Андрею 8 марок, то у Андрея станет марок вдвое больше, чем останется у Миши. Во втором цехе работают x человек, в первом – в 4 раза больше, чем во втором, а в третьем - на 50 человек больше, чем во втором. Всего в трех цехах завода работают 470 человек. Проверим: Математической моделью решения этой задачи являются следующие зависимости между исходными данными и результатом: б ыло у Миши х марок; у Андрея 1,5х. Стало у Миши х-8 , у Андрея 1,5х+8 . По условию задачи 1,5х+8=2(х-8). Математической моделью решения этой задачи являются следующие зависимости между исходными данными и результатом: во втором цехе работают x человек, в первом – 4х, а в третьем - х+50 . х+4х+х+50=470. Математической моделью решения этой задачи являются следующие зависимости между исходными данными и результатом: первое число х; второе х+2,5 . По условию задачи х/5=(х+2,5)/4.

05.05.17 Вот так обычно применяется математика к реальной жизни. Математические модели бывают не только алгебраические (в виде равенства с переменными, как в разобранных выше примерах), но и в другом виде: табличные, графические и другие. С другими видами моделей мы познакомимся на следующем занятии.

05.05.17 Задание на дом: § 9 (стр. 54-58) № , 2, 4 (стр. 60) в тетради

05.05.17 Спасибо за урок!

05.05.17 Источники Информатика и ИКТ: учебник для 8 класса http://www.lit.msu.ru/ru/new/study (графики, схемы) http://images.yandex.ru (картинки)