Средства синхронизации потоков в ОС Windows (критические секции, мьютексы, семафоры, события). Критические секции Завершения синхронизации в ос windows

Этот синхронизирующий объект может использоваться только локально внутри процесса, создавшего его. Остальные объекты могут быть использованы для синхронизации потоков разных процессов. Название объекта “критическая секция” связано с некоторым абстрактным выделением части программного кода (секции), выполняющего некоторые операции, порядок которых не может быть нарушен. То есть попытка двумя разными потоками одновременно выполнять код этой секции приведет к ошибке.

Например, такой секцией может быть удобно защитить функции-писатели, так как одновременный доступ нескольких писателей должен быть исключен.

Для критической секции вводят две операции:

войти в секцию; Пока какой-либо поток находится в критической секции, все остальные потоки при попытке войти в нее будут автоматически останавливаться в ожидании. Поток, уже вошедший в эту секцию, может входить в нее многократно, не ожидая ее освобождения.

покинуть секцию; При покидании потоком секции уменьшается счетчик числа вхождений этого потока в секцию, так что секция будет освобождена для других потоков только если поток выйдет из секции столько раз, сколько раз в нее входил. При освобождении критической секции будет пробужден только один поток, ожидающий разрешения на вход в эту секцию.

Вообще говоря, в других API, отличных от Win32 (например, OS/2), критическая секция рассматривается не как синхронизирующий объект, а как фрагмент кода программы, который может исполняться только одним потоком приложения. То есть вход в критическую секцию рассматривается как временное выключение механизма переключения потоков до выхода из этой секции. В Win32 API критические секции рассматриваются как объекты, что приводит к определенной путанице -- они очень близки по своим свойствам к неименованным объектам исключительного владения (mutex , см. ниже).

При использовании критических секций надо следить, что бы в секции не выделялись чересчур большие фрагменты кода, так как это может привести к существенным задержкам в выполнении других потоков.

Например, применительно к уже рассмотренным кучам -- не имеет смысла все функции по работе с кучей защищать критической секцией, так как функции-читатели могут выполняться параллельно. Более того, применение критической секции даже для синхронизации писателей на самом деле представляется малоудобным -- так как для синхронизации писателя с читателями последним все-равно придется входить в эту секцию, что практически приводит к защите всех функций единой секцией.

Можно выделить несколько случаев эффективного применения критических секций:

читатели не конфликтуют с писателями (защищать надо только писателей);

все потоки имеют примерно равные права доступа (скажем, нельзя выделить чистых писателей и читателей);

при построении составных синхронизирующих объектов, состоящих из нескольких стандартных, для защиты последовательных операций над составным объектом.

Процессом (process) называется экземпляр программы, загруженной в память. Этот экземпляр может создавать нити (thread), которые представляют собой последовательность инструкций на выполнение. Важно понимать, что выполняются не процессы, а именно нити.

Причем любой процесс имеет хотя бы одну нить. Эта нить называется главной (основной) нитью приложения.

Так как практически всегда нитей гораздо больше, чем физических процессоров для их выполнения, то нити на самом деле выполняются не одновременно, а по очереди (распределение процессорного времени происходит именно между нитями). Но переключение между ними происходит так часто, что кажется, будто они выполняются параллельно.

В зависимости от ситуации нити могут находиться в трех состояниях. Во-первых, нить может выполняться, когда ей выделено процессорное время, т.е. она может находиться в состоянии активности. Во-вторых, она может быть неактивной и ожидать выделения процессора, т.е. быть в состоянии готовности. И есть еще третье, тоже очень важное состояние - состояние блокировки. Когда нить заблокирована, ей вообще не выделяется время. Обычно блокировка ставится на время ожидания какого-либо события. При возникновении этого события нить автоматически переводится из состояния блокировки в состояние готовности. Например, если одна нить выполняет вычисления, а другая должна ждать результатов, чтобы сохранить их на диск. Вторая могла бы использовать цикл типа "while(!isCalcFinished) continue;", но легко убедиться на практике, что во время выполнения этого цикла процессор занят на 100 % (это называется активным ожиданием). Таких вот циклов следует по возможности избегать, в чем оказывает неоценимую помощь механизм блокировки. Вторая нить может заблокировать себя до тех пор, пока первая не установит событие, сигнализирующее о том, что чтение окончено.

Синхронизация нитей в ОС Windows

В Windows реализована вытесняющая многозадачность - это значит, что в любой момент система может прервать выполнение одной нити и передать управление другой. Ранее, в Windows 3.1, использовался способ организации, называемый кооперативной многозадачностью: система ждала, пока нить сама не передаст ей управление и именно поэтому в случае зависания одного приложения приходилось перезагружать компьютер.

Все нити, принадлежащие одному процессу, разделяют некоторые общие ресурсы - такие, как адресное пространство оперативной памяти или открытые файлы. Эти ресурсы принадлежат всему процессу, а значит, и каждой его нити. Следовательно, каждая нить может работать с этими ресурсами без каких-либо ограничений. Но... Если одна нить еще не закончила работать с каким-либо общим ресурсом, а система переключилась на другую нить, использующую этот же ресурс, то результат работы этих нитей может чрезвычайно сильно отличаться от задуманного. Такие конфликты могут возникнуть и между нитями, принадлежащими различным процессам. Всегда, когда две или более нитей используют какой-либо общий ресурс, возникает эта проблема.

Пример. Несинхронизированная работа нитей: если временно приостановить выполнение нити вывода на экран (пауза), фоновая нить заполнения массива будет продолжать работать.

#include #include int a; HANDLE hThr; unsigned long uThrID; void Thread(void* pParams) { int i, num = 0; while (1) { for (i=0; i<5; i++) a[i] = num; num++; } } int main(void) { hThr=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)Thread,NULL,0,&uThrID); while(1) printf("%d %d %d %d %d\n", a, a, a, a, a); return 0; }

Именно поэтому необходим механизм, позволяющий потокам согласовывать свою работу с общими ресурсами. Этот механизм получил название механизма синхронизации нитей (thread synchronization).

Этот механизм представляет собой набор объектов операционной системы, которые создаются и управляются программно, являются общими для всех нитей в системе (некоторые - для нитей, принадлежащих одному процессу) и используются для координирования доступа к ресурсам. В качестве ресурсов может выступать все, что может быть общим для двух и более нитей - файл на диске, порт, запись в базе данных, объект GDI, и даже глобальная переменная программы (которая может быть доступна из нитей, принадлежащих одному процессу).

Объектов синхронизации существует несколько, самые важные из них - это взаимоисключение (mutex), критическая секция (critical section), событие (event) и семафор (semaphore). Каждый из этих объектов реализует свой способ синхронизации. Также в качестве объектов синхронизации могут использоваться сами процессы и нити (когда одна нить ждет завершения другой нити или процесса); а также файлы, коммуникационные устройства, консольный ввод и уведомления об изменении.

Любой объект синхронизации может находиться в так называемом сигнальном состоянии. Для каждого типа объектов это состояние имеет различный смысл. Нити могут проверять текущее состояние объекта и/или ждать изменения этого состояния и таким образом согласовывать свои действия. При этом гарантируется, что когда нить работает с объектами синхронизации (создает их, изменяет состояние) система не прервет ее выполнения, пока она не завершит это действие. Таким образом, все конечные операции с объектами синхронизации являются атомарными (неделимыми.

Работа с объектами синхронизации

Чтобы создать тот или иной объект синхронизации, производится вызов специальной функции WinAPI типа Create... (напр. CreateMutex). Этот вызов возвращает дескриптор объекта (HANDLE), который может использоваться всеми нитями, принадлежащими данному процессу. Есть возможность получить доступ к объекту синхронизации из другого процесса - либо унаследовав дескриптор этого объекта, либо, что предпочтительнее, воспользовавшись вызовом функции открытия объекта (Open...). После этого вызова процесс получит дескриптор, который в дальнейшем можно использовать для работы с объектом. Объекту, если только он не предназначен для использования внутри одного процесса, обязательно присваивается имя. Имена всех объектов должны быть различны (даже если они разного типа). Нельзя, например, создать событие и семафор с одним и тем же именем.

По имеющемуся дескриптору объекта можно определить его текущее состояние. Это делается с помощью т.н. ожидающих функций. Чаще всего используется функция WaitForSingleObject. Эта функция принимает два параметра, первый из которых - дескриптор объекта, второй - время ожидания в мсек. Функция возвращает WAIT_OBJECT_0, если объект находится в сигнальном состоянии, WAIT_TIMEOUT - если истекло время ожидания, и WAIT_ABANDONED, если объект-взаимоисключение не был освобожден до того, как владеющая им нить завершилась. Если время ожидания указано равным нулю, функция возвращает результат немедленно, в противном случае она ждет в течение указанного промежутка времени. В случае, если состояние объекта станет сигнальным до истечения этого времени, функция вернет WAIT_OBJECT_0, в противном случае функция вернет WAIT_TIMEOUT. Если в качестве времени указана символическая константа INFINITE, то функция будет ждать неограниченно долго, пока состояние объекта не станет сигнальным.

Очень важен тот факт, что обращение к ожидающей функции блокирует текущую нить, т.е. пока нить находится в состоянии ожидания, ей не выделяется процессорного времени.

Критические секции

Объект-критическая секция помогает программисту выделить участок кода, где нить получает доступ к разделяемому ресурсу, и предотвратить одновременное использование ресурса. Перед использованием ресурса нить входит в критическую секцию (вызывает функцию EnterCriticalSection). Если после этого какая-либо другая нить попытается войти в ту же самую критическую секцию, ее выполнение приостановится, пока первая нить не покинет секцию с помощью вызова LeaveCriticalSection. Используется только для нитей одного процесса. Порядок входа в критическую секцию не определен.

Существует также функция TryEnterCriticalSection, которая проверяет, занята ли критическая секция в данный момент. С ее помощью нить в процессе ожидания доступа к ресурсу может не блокироваться, а выполнять какие-то полезные действия.

Пример. Синхронизация нитей с помощью критических секций.

#include #include CRITICAL_SECTION cs; int a; HANDLE hThr; unsigned long uThrID; void Thread(void* pParams) { int i, num = 0; while (1) { EnterCriticalSection(&cs); for (i=0; i<5; i++) a[i] = num; num++; LeaveCriticalSection(&cs); } } int main(void) { InitializeCriticalSection(&cs); hThr=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)Thread,NULL,0,&uThrID); while(1) { EnterCriticalSection(&cs); printf("%d %d %d %d %d\n", a, a, a, a, a); LeaveCriticalSection(&cs); } return 0; }

Взаимоисключения

Объекты-взаимоисключения (мьютексы, mutex - от MUTual EXclusion) позволяют координировать взаимное исключение доступа к разделяемому ресурсу. Сигнальное состояние объекта (т.е. состояние "установлен") соответствует моменту времени, когда объект не принадлежит ни одной нити и его можно "захватить". И наоборот, состояние "сброшен" (не сигнальное) соответствует моменту, когда какая-либо нить уже владеет этим объектом. Доступ к объекту разрешается, когда нить, владеющая объектом, освободит его.

Две (или более) нити могут создать мьютекс с одним и тем же именем, вызвав функцию CreateMutex. Первая нить действительно создает мьютекс, а следующие - получают дескриптор уже существующего объекта. Это дает возможность нескольким нитям получить дескриптор одного и того же мьютекса, освобождая программиста от необходимости заботиться о том, кто в действительности создает мьютекс. Если используется такой подход, желательно установить флаг bInitialOwner в FALSE, иначе возникнут определенные трудности при определении действительного создателя мьютекса.

Несколько нитей могут получить дескриптор одного и того же мьютекса, что делает возможным взаимодействие между процессами. Можно использовать следующие механизмы такого подхода:

  • Дочерний процесс, созданный при помощи функции CreateProcess может наследовать дескриптор мьютекса в случае, если при создании мьютекса функцией CreateMutex был указан параметр lpMutexAttributes.
  • Нить может получить дубликат существующего мьютекса с помощью функции DuplicateHandle.
  • Нить может указать имя существующего мьютекса при вызове функций OpenMutex или CreateMutex.

Для того чтобы объявить взаимоисключение принадлежащим текущей нити, надо вызвать одну из ожидающих функций. Нить, которой принадлежит объект, может его "захватывать" повторно сколько угодно раз (это не приведет к самоблокировке), но столько же раз она должна будет его освобождать с помощью функции ReleaseMutex.

Для синхронизации нитей одного процесса более эффективно использование критических секций.

Пример. Синхронизация нитей с помощью мьютексов.

#include #include HANDLE hMutex; int a; HANDLE hThr; unsigned long uThrID; void Thread(void* pParams) { int i, num = 0; while (1) { WaitForSingleObject(hMutex, INFINITE); for (i=0; i<5; i++) a[i] = num; num++; ReleaseMutex(hMutex); } } int main(void) { hMutex=CreateMutex(NULL, FALSE, NULL); hThr=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)Thread,NULL,0,&uThrID); while(1) { WaitForSingleObject(hMutex, INFINITE); printf("%d %d %d %d %d\n", a, a, a, a, a); ReleaseMutex(hMutex); } return 0; }

События

Объекты-события используются для уведомления ожидающих нитей о наступлении какого-либо события. Различают два вида событий - с ручным и автоматическим сбросом. Ручной сброс осуществляется функцией ResetEvent. События с ручным сбросом используются для уведомления сразу нескольких нитей. При использовании события с автосбросом уведомление получит и продолжит свое выполнение только одна ожидающая нить, остальные будут ожидать дальше.

Функция CreateEvent создает объект-событие, SetEvent - устанавливает событие в сигнальное состояние, ResetEvent - сбрасывает событие. Функция PulseEvent устанавливает событие, а после возобновления ожидающих это событие нитей (всех при ручном сбросе и только одной при автоматическом), сбрасывает его. Если ожидающих нитей нет, PulseEvent просто сбрасывает событие.

Пример. Синхронизация нитей с помощью событий.

#include #include HANDLE hEvent1, hEvent2; int a; HANDLE hThr; unsigned long uThrID; void Thread(void* pParams) { int i, num = 0; while (1) { WaitForSingleObject(hEvent2, INFINITE); for (i=0; i<5; i++) a[i] = num; num++; SetEvent(hEvent1); } } int main(void) { hEvent1=CreateEvent(NULL, FALSE, TRUE, NULL); hEvent2=CreateEvent(NULL, FALSE, FALSE, NULL); hThr=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)Thread,NULL,0,&uThrID); while(1) { WaitForSingleObject(hEvent1, INFINITE); printf("%d %d %d %d %d\n", a, a, a, a, a); SetEvent(hEvent2); } return 0; }

Семафоры

Объект-семафор - это фактически объект-взаимоисключение со счетчиком. Данный объект позволяет "захватить" себя определенному количеству нитей. После этого "захват" будет невозможен, пока одна из ранее "захвативших" семафор нитей не освободит его. Семафоры применяются для ограничения количества нитей, одновременно работающих с ресурсом. Объекту при инициализации передается максимальное число нитей, после каждого "захвата" счетчик семафора уменьшается. Сигнальному состоянию соответствует значение счетчика больше нуля. Когда счетчик равен нулю, семафор считается не установленным (сброшенным).

Функция CreateSemaphore создает объект-семафор с указанием и максимально возможного начального его значения, OpenSemaphore – возвращает дескриптор существующего семафора, захват семафора производится с помощью ожидающих функций, при этом значение семафора уменьшается на единицу, ReleaseSemaphore - освобождение семафора с увеличением значения семафора на указанное в параметре число.

Пример. Синхронизация нитей с помощью семафоров.

#include #include HANDLE hSem; int a; HANDLE hThr; unsigned long uThrID; void Thread(void* pParams) { int i, num = 0; while (1) { WaitForSingleObject(hSem, INFINITE); for (i=0; i<5; i++) a[i] = num; num++; ReleaseSemaphore(hSem, 1, NULL); } } int main(void) { hSem=CreateSemaphore(NULL, 1, 1, "MySemaphore1"); hThr=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)Thread,NULL,0,&uThrID); while(1) { WaitForSingleObject(hSem, INFINITE); printf("%d %d %d %d %d\n", a, a, a, a, a); ReleaseSemaphore(hSem, 1, NULL); } return 0; }

Защищенный доступ к переменным

Существует ряд функций, позволяющих работать с глобальными переменными из всех нитей, не заботясь о синхронизации, т.к. эти функции сами за ней следят – их выполнение атомарно. Это функции InterlockedIncrement, InterlockedDecrement, InterlockedExchange, InterlockedExchangeAdd и InterlockedCompareExchange. Например, функция InterlockedIncrement атомарно увеличивает значение 32-битной переменной на единицу, что удобно использовать для различных счетчиков.

Для получения полной информации о назначении, использовании и синтаксисе всех функций WIN32 API необходимо воспользоваться системой помощи MS SDK, входящей в состав сред программирования Borland Delphi или CBuilder, а также MSDN, поставляемым в составе системы программирования Visual C.

Синхронизация потоков

При построении многопоточного приложения необходимо гарантировать, что любая часть разделяемых данных защищена от возможности изменения их значений множеством потоков. Учитывая, что все потоки в AppDomain имеют параллельный доступ к разделяемым данным приложения, представьте, что может случиться, если несколько потоков одновременно обратятся к одному и тому же элементу данных. Поскольку планировщик потоков случайным образом будет приостанавливать их работу, что если поток А будет прерван до того, как завершит свою работу? А вот что: поток В после этого прочтет нестабильные данные.

Чтобы проиллюстрировать проблему, связанную с параллелизмом, давайте рассмотрим следующий пример:

Public class MyTheard { public void ThreadNumbers() { // Информация о потоке Console.WriteLine("{0} поток использует метод ThreadNumbers",Thread.CurrentThread.Name); // Выводим числа Console.Write("Числа: "); for (int i = 0; i

Прежде чем посмотреть на тестовые запуски, давайте еще раз проясним проблему. Первичный поток внутри этого домена приложений начинает свое существование, порождая десять вторичных рабочих потоков. Каждый рабочий поток должен вызвать метод ThreadNumbers() на одном и том же экземпляре MyTheard. Учитывая, что никаких мер для блокировки разделяемых ресурсов этого объекта (консоли) не предпринималось, есть хороший шанс, что текущий поток будет отключен, прежде чем метод ThreadNumbers() сможет напечатать полные результаты. Поскольку в точности не известно, когда это может случиться (и может ли вообще), будут получаться непредвиденные результаты. Например, может появиться следующий вывод:

Ясно, что здесь присутствует определенная проблема. Как только каждый поток требует от MyTheard печати числовых данных, планировщик потоков меняет их местами в фоновом режиме. В результате получается несогласованный вывод. Для решения подобных проблем в C# используется синхронизация .

В основу синхронизации положено понятие блокировки, посредством которой организуется управление доступом к кодовому блоку в объекте. Когда объект заблокирован одним потоком, остальные потоки не могут получить доступ к заблокированному кодовому блоку. Когда же блокировка снимается одним потоком, объект становится доступным для использования в другом потоке.

Средство блокировки встроено в язык C#. Благодаря этому все объекты могут быть синхронизированы. Синхронизация организуется с помощью ключевого слова lock . Она была предусмотрена в C# с самого начала, и поэтому пользоваться ею намного проще, чем кажется на первый взгляд. В действительности синхронизация объектов во многих программах на C# происходит практически незаметно.

Ниже приведена общая форма блокировки:

lock(lockObj) { // синхронизируемые операторы }

где lockObj обозначает ссылку на синхронизируемый объект. Если же требуется синхронизировать только один оператор, то фигурные скобки не нужны. Оператор lock гарантирует, что фрагмент кода, защищенный блокировкой для данного объекта, будет использоваться только в потоке, получающем эту блокировку. А все остальные потоки блокируются до тех пор, пока блокировка не будет снята. Блокировка снимается по завершении защищаемого ею фрагмента кода.

Блокируемым считается такой объект, который представляет синхронизируемый ресурс. В некоторых случаях им оказывается экземпляр самого ресурса или же произвольный экземпляр объекта, используемого для синхронизации. Следует, однако, иметь в виду, что блокируемый объект не должен быть общедоступным, так как в противном случае он может быть заблокирован из другого, неконтролируемого в программе фрагмента кода и в дальнейшем вообще не разблокируется.

В прошлом для блокировки объектов очень часто применялась конструкция lock (this). Но она пригодна только в том случае, если this является ссылкой на закрытый объект. В связи с возможными программными и концептуальными ошибками, к которым может привести конструкция lock (this), применять ее больше не рекомендуется. Вместо нее лучше создать закрытый объект, чтобы затем заблокировать его.

Давайте модифицируем предыдущий пример добавив в него синхронизацию:

Public class MyTheard { private object threadLock = new object(); public void ThreadNumbers() { // Используем маркер блокировки lock (threadLock) { // Информация о потоке Console.WriteLine("{0} поток использует метод ThreadNumbers", Thread.CurrentThread.Name); // Выводим числа Console.Write("Числа: "); for (int i = 0; i

Как только поток войдет в контекст lock, маркер блокировки (в данном случае - текущий объект) станет недоступным другим потокам до тех пор, пока блокировка не будет снята по выходе из контекста lock. Таким образом, если поток А захватит маркер блокировки, другие потоки не смогут войти ни в один из контекстов, использующих тот же маркер, до тех пор, пока поток А не освободит его.

Иногда при работе с несколькими потоками или процессами появляется необходимость синхронизировать выполнение двух или более из них. Причина этого чаще всего заключается в том, что два или более потоков могут требовать доступ к разделяемому ресурсу, которыйреально не может быть предоставлен сразу нескольким потокам. Разделяемым называется ресурс, доступ к которому могут одновременно получать несколько выполняющихся задач.

Механизм, обеспечивающий процесс синхронизации, называется ограничением доступа. Необходимость в нем возникает также в тех случаях, когда один поток ожидает события, генерируемого другим потоком. Естественно, должен существовать какой-то способ, с помощью которого первой поток будет приостановлен до совершения события. После этого поток должен продолжить свое выполнение.

Имеется два общих состояния, в которых может находиться задача. Во-первых, задача может выполняться (или быть готовой к выполнению, как только получит доступ к ресурсам процессора). Во-вторых, задача может бытьблокирована. В этом случае ее выполнение приостановлено до тех пор, пока не освободится нужный ей ресурс или не произойдет определенное событие.

В Windows имеется специальные сервисы, которые позволяют определенным образом ограничить доступ к разделяемым ресурсам, ведь без помощи операционной системы отдельный процесс или поток не может сам определить, имеет ли он единоличный доступ к ресурсу. Операционная система Windows содержит процедуру, которая в течении одной непрерывной операции проверяет и, если это возможно, устанавливает флаг доступа к ресурсу. На языке разработчиков операционной системы такая операция называется операцией проверки и установки . Флаги, используемые для обеспечения синхронизации и управления доступом к ресурсам, называютсясемафорами (semaphore) . Интерфейс Win32 API обеспечивает поддержку семафоров и других объектов синхронизации. Библиотека MFC также включает поддержку данных объектов.

Объекты синхронизации и классы mfc

Интерфейс Win32 поддерживает четыре типа объектов синхронизации - все они так или иначе основаны на понятии семафора.

Первым типом объектов является собственно семафор, или классический (стандартный) семафор . Он позволяет ограниченному числу процессов и потоков обращаться к одному ресурсу. При этом доступ к ресурсу либо полностью ограничен (один и только один поток или процесс может обратиться к ресурсу в определенный период времени), либо одновременный доступ получает лишь малое количество потоков и процессов. Семафоры реализуются с помощью счетчика, значение которого уменьшается, когда задаче выделяется семафор, то увеличивается, когда задача освобождает семафор.

Вторым типом объектов синхронизации является исключающий (mutex) семафор . Он предназначен для полного ограничения доступа к ресурсу, чтобы в любой момент времени к ресурсу мог обратиться только один процесс или поток. Фактически, это особая разновидность семафора.

Третьим типом объектов синхронизации является событие , илиобъект события (event object). Он используется для блокирования доступа к ресурсу до тех пор, пока какой-нибудь другой процесс или поток не заявит о том, что данный ресурс может быть использован. Таким образом, данный объект сигнализирует о выполнении требуемого события.

При помощи объекта синхронизации четвертого типа можно запрещать выполнения определенных участков кода программы несколькими потоками одновременно. Для этого данные участки должны быть объявлены как критический раздел (critical section) . Когда в этот раздел входит один поток, другим потокам запрещается делать тоже самое до тех пор, пока первый поток не выйдет из данного раздела.

Критические разделы, в отличие от других типов объектов синхронизации, применяются только для синхронизации потоков внутри одного процесса. Другие же типы объектов могут быть использованы для синхронизации потоков внутри процесса или для синхронизации процессов.

В MFC механизм синхронизации, обеспечиваемый интерфейсом Win32 , поддерживается с помощью следующих классов, порожденных от класса CSyncObject:

    CCriticalSection - реализует критический раздел.

    CEvent - реализует объект события

    CMutex - реализует исключающий семафор.

    CSemaphore - реализует классический семафор.

Кроме этих классов в MFC определены также два вспомогательных класса синхронизации: CSingleLock иCMultiLock . Они контролируют доступ к объекту синхронизации и содержат методы, используемы для предоставления и освобождения таких объектов. КлассCSingleLock управляет доступом к одному объекту синхронизации, а классCMultiLock - к нескольким объектам. Далее будем рассматривать только классCSingleLock .

Когда какой-либо объект синхронизации создан, доступ к нему можно контролировать с помощью класса CSingleLock . Для этого необходимо сначала создать объект типаCSingleLock с помощью конструктора:

CSingleLock (CSyncObject* pObject, BOOL bInitialLock = FALSE);

Через первый параметр передается указатель на объект синхронизации, например семафор. Значение второго параметра определяет, должен ли конструктор попытаться получить доступ к данному объекту. Если этот параметр не равен нулю, то доступ будет получен, в противном случае попыток получить доступ не будет. Если доступ получен, то поток, создавший объект класса CSingleLock , будет остановлен до освобождения соответствующего объекта синхронизации методомUnlock классаCSingleLock .

Когда объект типа CSingleLock создан, доступ к объекту, на который указывал параметр pObject , может контролироваться с помощью двух функций: Lock иUnlock классаCSingleLock .

Метод Lock предназначен для получения доступа к объекту к объекту синхронизации. Вызвавший его поток приостанавливается до завершения данного метода, то есть до тех пор, пока не будет получен доступ к ресурсу. Значение параметра определяет, как долго функция будет ожидать получения доступа к требуемому объекту. Каждый раз при успешном завершении метода значение счетчика, связанного с объектом синхронизации, уменьшается на единицу.

Метод Unlock освобождает объект синхронизации, давая возможность другим потокам использовать ресурс. В первом варианте метода значение счетчика, связанного с данным объектом, увеличивается на единицу. Во втором варианте первый параметр определяет, на сколько это значение должно быть увеличено. Второй параметр указывает на переменную, в которую будет записано предыдущее значение счетчика.

При работе с классом CSingleLock общая процедура управления доступом к ресурсу такова:

    создать объект типа CSyncObj (например, семафор), который будет использоваться для управления доступом к ресурсу;

    с помощью созданного объекта синхронизации создать объект типа CSingleLock;

    для получения доступа к ресурсу вызвать метод Lock;

    выполнить обращение к ресурсу;

    вызвать метод Unlock , чтобы освободить ресурс.

Далее описывается, как создавать и использовать семафоры и объекты событий. Разобравшись с этими понятиями, можно достаточно просто изучить и использовать два других типа объектов снхронизации: критические секции и мьютексы.


Для программ, использующих несколько потоков или процессов, необходимо, чтобы все они выполняли возложенные на них функции в нужной последовательности. В среде Windows 9x для этой цели предлагается использовать несколько механизмов, обеспечивающих слаженную работу потоков. Эти механизмы называют механизмами синхронизации. Предположим, разрабатывается программа, в которой параллельно работают два потока. Каждый поток обращается к одной разделяемой глобальной переменной. Один поток при каждом обращении к этой переменной выполняет её инкремент, а второй – декремент. При одновременной асинхронной работе потоков неизбежно возникает такая ситуация: - первый поток прочитал значение глобальной переменной в локальную; - ОС прерывает его, так как закончился выделенный ему квант времени процессора, и передаёт управление второму потоку; - второй поток также считал значение глобальной переменной в локальную, декрементировал её и записал новое значение обратно; - ОС вновь передаёт управление первому потоку, тот, ничего не зная о действиях второго потока, инкрементирует свою локальную переменную и записывает её значение в глобальную. Очевидно, что изменения, внесённые вторым потоком, будут утеряны. Для исключения подобных ситуаций необходимо разделить во времени использование совместных данных. В таких случаях используются механизмы синхронизации, которые обеспечивают корректную работу нескольких потоков. Средства синхронизации в ОС Windows : 1) критическая секция (Critical Section ) – это объект, который принадлежи процессу, а не ядру. А значит, не может синхронизировать потоки из разных процессов. Существует так же функции инициализации (создания) и удаления, вхождения и выхода из критической секции: создание – InitializeCriticalSection(…), удаление – DeleteCriticalSection(…), вход – EnterCriticalSection(…), выход – LeaveCriticalSection(…). Ограничения: поскольку это не объект ядра, то он не виден другим процессам, то есть можно защищать только потоки своего процесса. Критический раздел анализирует значение специальной перемен­ной процесса, которая используется как флаг, предотвращающий исполнение некоторого участка кода несколькими потоками одновременно. Среди синхронизирующих объектов критические разделы наиболее просты. 2) mutex mutable exclude . Это объект ядра, у него есть имя, а значит с их помощью можно синхронизировать доступ к общим данным со стороны нескольких процессов, точнее, со стороны потоков разных процессов. Ни один другой поток не может завладеть мьютексом, который уже принадлежит одному из по­токов. Если мьютекс защищает какие-то совместно используемые данные, он сможет выполнить свою функцию только в случае, если перед обращением к этим данным каждый из потоков будет проверять состояние этого мьютекса. Windows расценивает мьютекс как объект общего доступа, который можно пере­вести в сигнальное состояние или сбросить. Сигнальное состояние мьютекса говорит о том, что он занят. Потоки должны самостоятельно ана­лизировать текущее состояние мьютексов. Если требуется, чтобы к мьютексу могли обратиться потоки других процессов, ему надо присвоить имя. Функции: CreateMutex(имя) – создание, hnd=OpenMutex(имя) – открытие, WaitForSingleObject(hnd) – ожидание и занятие, ReleaseMutex(hnd) – освобождение, CloseHandle(hnd) – закрытие. Его можно использовать в защите от повторного запуска программ. 3) семафор – semaphore . Объект ядра “семафор” используются для учёта ресурсов и служат для ограничения одновременного доступа к ресурсу нескольких потоков. Используя семафор, можно организовать работу программы таким образом, что к ресурсу одновременно смо­гут получить доступ несколько потоков, однако количество этих потоков будет ограничено. Создавая семафор, указывается максимальное количество пото­ков, которые одновременно смогут работать с ресурсом. Каждый раз, когда программа обращается к семафору, значение счетчика ресурсов семафора уменьша­ется на единицу. Когда значение счетчика ресурсов становится равным нулю, семафор недоступен. создание CreateSemaphore, открытие OpenSemaphore, занять WaitForSingleObject, освобождение ReleaseSemaphore 4 ) событие – event . События обычно просто оповещают об окончании какой-либо операции, они также являются объектами ядра. Можно не просто явным образом освободить, но так же есть операция установки события. События могут быть мануальными (manual) и единичными (single). Единичное событие (single event) – это скорее общий флаг. Событие находится в сигнальном состоянии, если его установил какой-нибудь поток. Если для работы программы требуется, чтобы в случае возникновения события на него реа­гировал только один из потоков, в то время как все остальные потоки продолжали ждать, то используют единичное событие. Мануальное событие (manual event) - это не про­сто общий флаг для нескольких потоков. Оно выполняет несколько более сложные функции. Любой поток может установить это событие или сбросить (очистить) его. Если событие установлено, оно останется в этом состоянии сколь угодно долгое время, вне зависимости от того, сколько потоков ожидают установки этого события. Когда все потоки, ожидающие этого события, получат сообщение о том, что событие произошло, оно автоматически сбросится. Функции: SetEvent, ClearEvent, WaitForEvent. Типы событий: 1) событие с автоматическим сбросом: WaitForSingleEvent. 2) событие с ручным сбросом (manual), тогда событие необходимо сбрасывать: ReleaseEvent. Некоторые теоретики выделяют ещё один объект синхронизации: WaitAbleTimer – объект ядра ОС, который самостоятельно переходит в свободное состояние через заданный интервал времени (будильник).