Применение аминокислот в качестве лекарственных препаратов. Презентация на тему "«Аминокислоты» химия" Урок по теме аминокислоты с презентацией

Аминокислоты Выполнила ученица 10 а МБОУ СОШ №102 г. Самара Слипкус Виталия

План 1. Физические свойства 2. Химические свойства 3 . Получение 4. Оптическая изомерия 5. Классификация 6. Значение

Физические свойств а Аминокислоты - бесцветные кристаллические вещества, хорошо растворимые в воде и мало растворимые в органических растворителях. Многие из них обладают сладким вкусом. Они имеют высокую плотность и исключительно высокие температуры плавления (часто разложения).

Химические свойства Все аминокислоты амфотерные соединения, они могут проявлять как кислотные свойства, обусловленные наличием в их молекулах карбоксильной группы - COOH , так и основные свойства, обусловленные аминогруппой - NH 2 . Растворы аминокислот в воде обладают свойствами буферных растворов, т.е. находятся в состоянии внутренних солей. Аминокислоты обычно могут вступать во все реакции, характерные для карбоновых кислот и аминов. Важной особенностью аминокислот является их способность к поликонденсации (процесс синтеза полимеров), приводящей к образованию полиамидов, в том числе пептидов, белков, нейлона, капрона.

Получение Большинство аминокислот можно получить в ходе гидролиза белков или как результат химических реакций:

Оптическая изомерия Все входящие в состав живых организмов α-аминокислоты, кроме глицина, содержат асимметричный атом углерода (треонин и изолейцин содержат два асимметричных атома) и обладают оптической активностью. Почти все встречающиеся в природе α-аминокислоты имеют L-форму, и лишь L-аминокислоты включаются в состав белков, синтезируемых на рибосомах.

Классификация Заменимые аминокислоты – это такие аминокислоты, которые могут поступать в наш организм с белковой пищей либо же образовываться в организме из других аминокислот. Незаменимые аминокислоты – это такие аминокислоты, которые наш организм не может самостоятельно вырабатывать, они обязательно должны поступать с белковой пищей.

Значение Аминокислоты являются основным "строительным материалом" для синтеза специфических тканевых белков, ферментов, пептидных гормонов и других физиологически активных соединений. Помимо того, что аминокислоты образуют белки, некоторые из них: Выполняют роль нейромедиаторов или являются их предшественниками. Нейромедиаторы - это химические вещества, передающие нервный импульс с одной нервной клетки на другую. Таким образом, некоторые аминокислоты необходимы для нормальной работы головного мозга. Аминокислоты способствуют тому, что витамины и минералы адекватно выполняют свои функции. Некоторые аминокислоты непосредственно снабжают энергией мышечную ткань.

1 слайд

2 слайд

История открытия К началу XIX столетия появляются первые работы по химическому изучению белков. Уже в 1803 г. Дж. Дальтон дает первые формулы белков - альбумина и желатина - как веществ, содержащих азот. В 1810 г. Ж. Гей-Люссак проводит химические анализы белков - фибрина крови, казеина и отмечает сходство их элементного состава. Решающее значение для понимания химической природы белков имело выделение при их гидролизе аминокислот. Вероятно, первым это сделал А. Браконно в 1820 г., когда, действуя на белки серной кислотой, при кипячении он получил «клеевой сахар», или гликокол (глицин), при гидролизе фибрина из мяса - лейцин и при разложении шерсти - также лейцин и смесь других продуктов гидролиза. Первой открытой аминокислотой был, видимо, аспарагин, выделенный Л. Вокленом из сока спаржи Asparagus (1806). В это же время Ж. Пруст получил лейцин при разложении сыра и творога. Затем из продуктов гидролиза белка были выделены многие другие аминокислоты (табл. 1).

3 слайд

Аминокислота Год Источник Кто впервые выделил 1. Глицин 1820 Желатин А.Браконно 2. Лейцин 1820 1839 Мышечные волокна Фибринб шерсть А.Браконно Г.Мульдер 3. Тирозин 1848 Казеин Ф.Бопп 4. Серин 1865 Шелк Э.Крамер 5. Глутаминовая к-та 1866 Растительные белки Г.Риттхаузен 6. Аспарагиновая к-та 1868 Конглутин легумин Г.Риттхаузен 7. Фенилаланин 1881 Ростки люпина Э.Шульце, Й.Барбьери 8. Аланин 1888 Фиброин шелка Т.Вейль 9. Лизин 1889 Казеин Э.Дрексель 10. Аргинин 1895 Вещество рога С.Хедин 11. Гистидин 1896 Стуринб гистоны А.Коссель, С.Хедин 12. Цистин 1899 Вещество рога К.Мёрнер 13. Валин 1901 Казеин Э.Фишер 14. Пролин 1901 Казеин Э.Фишер 15. Оксипролин 1902 Желатин Э.Фишер 16. Триптофан 1902 Казеин Ф.Гопкинс, Д.Кол 17.Изолейцин 1904 Фибрин Ф.Эрлих 18. Метионин 1922 Казеин Д. Мёллер 19. Треонин 1925 Белки овса С.Шрайвер 20. Оксилизин 1925 Белки рыб С.Шрайвер

4 слайд

Первая концепция строения белков принадлежит голландскому химику Г. Мульдеру (1836). Основываясь на теории радикалов, он сформулировал понятие о минимальной структурной единице, входящей в состав всех белков. Эту единицу, которой приписывался состав 2C8H12N2 + 50, Г. Мульдер назвал протеином (Рг), а свою концепцию - теорией протеина. Позднее состав протеина был уточнен - C40H62N10O12; дополнительно к протеинным единицам некоторые белки содержали серу и фосфор. Формула белков, предложенная Мульдером в 1838 г., выглядела так: Г. Мульдер пользовался структурными формулами и для обозначения ряда физиологических процессов. В своем учебнике физиологической химии (1844) он рассматривал дыхание как окисление протеина, пищеварение - как перестройку белка с изменением содержания S, Р, Са и т. п. Работы Г. Мульдера способствовали широкому распространению взглядов о единстве всех белков, их фундаментальном значении в мире живой природы. Однако вскоре наступают трудные времена для теории протеина. В 1846 г. Н. Э. Лясковский, работавший в лаборатории Ю. Либиха, доказал неточность многих приведенных Г. Мульдером анализов. Свои сомнения в правильности теории публично высказал Ю. Либих. Г. Мульдер пытался корректировать формулу протеина, но в конце концов уступил под натиском новых фактов и открытий. белок сыворотки крови 10Pr S2P

5 слайд

Структура и свойства аминокислот Общую структурную формулу любой аминокислоты можно представить следующим образом: карбоксильная группа (- СООН) и аминогруппа (- NH2) связаны с одним и тем же a-атомом углерода (счет атомов ведется от карбоксильной группы с помощью букв греческого алфавита - α, β, γ и т. д.). По взаимному расположению функциональных групп: α , β , γ… α-аминомасляная β-аминопропионовая γ-аминомасляная

6 слайд

Классификация По радикалу Неполярные: глицин, аланин, валин, изолейцин, лейцин, пролин, метионин, фенилаланин, триптофан Полярные незаряженные (заряды скомпенсированы) pH=7: серин, треонин, цистеин, аспарагин, глутамин, тирозин Полярные заряженные отрицательно при pH7: лизин, аргинин, гистидин По функциональным группам Алифатические Моноаминомонокарбоновые: глицин, аланин, валин, изолейцин, лейцин Оксимоноаминокарбоновые: серин, треонин Моноаминодикарбоновые: аспартат, глутамат, за счёт второй карбоксильной группы несут в растворе отрицательный заряд Амиды моноаминодикарбоновых: аспарагин, глутамин Диаминомонокарбоновые: лизин, аргинин, несут в растворе положительный заряд Серосодержащие: цистеин, метионин Ароматические: фенилаланин, тирозин, триптофан, (гистидин) Гетероциклические: триптофан, гистидин, пролин Иминокислоты: пролин

7 слайд

8 слайд

Оптическая изомерия Все входящие в состав живых организмов α-аминокислоты, кроме глицина, содержат асимметричный атом углерода (треонин и изолейцин содержат два асимметричных атома) и обладают оптической активностью. Почти все встречающиеся в природе α-аминокислоты имеют L-форму.

9 слайд

Свойства аминокислот Аминокислоты - бесцветные кристаллические вещества, хорошо растворимые в воде. Многие из них обладают сладким вкусом. Все аминокислоты амфотерные соединения, они могут проявлять как кислотные свойства, обусловленные наличием в их молекулах карбоксильной группы -COOH, так и основные свойства, обусловленные аминогруппой -NH2. Аминокислоты взаимодействуют с кислотами и щелочами. Аминокислоты обычно могут вступать во все реакции, характерные для карбоновых кислот и аминов. Изоэлектрической точкой аминокислоты называют значение pH, при котором максимальная доля молекул аминокислоты обладает нулевым зарядом. При таком pH аминокислота наименее подвижна в электрическом поле, и данное свойство можно использовать для разделения аминокислот, а также белков и пептидов.

12 слайд

В смеси или отдельно аминокислоты применяют в медицине, в том числе при нарушениях обмена веществ и заболеваниях органов пищеварения, при некоторых заболеваниях центральной нервной системы (γ-аминомасляная и глутаминовая кислоты, ДОФА). Аминокислоты используются при изготовлении лекарственных препаратов, красителей, в парфюмерной промышленности, в производстве моющих средств, синтетических волокон и пленки и т. д. Для хозяйственных и медицинских нужд аминокислоты получают с помощью микроорганизмов путем так называемого микробиологического синтеза (лизин, триптофан, треонин); их выделяют также из гидролизатов природных белков (пролин, цистеин, аргинин, гистидин). Но наиболее перспективны смешанные способы получения, совмещающие методы химического синтеза и использованиеферментов.


Амины органические соединения, являющиеся производными аммиака, в молекуле которого один, два или три атома водорода замещены на углеводородные радикалы. По числу замещённых атомов водорода различают соответственно первичные, (Замещен один атом водорода) вторичные (Замещены два атома водорода из трех) и третичные (Замещены три атома водорода из трех) амины.




Сульфаниламидные препараты (сульфаниламиды) - к ним относятся производные сульфаниловой кислоты, в готовом виде представляют собой белые или слегка желтоватые порошки без запаха и вкуса, плохо растворимые в воде. Их противомикробное действие связано главным образом с тем, что они нарушают процесс получения микробами необходимых для их жизни и развития "ростовых" факторов - фолиевой кислоты и других веществ. Прием сульфаниламидов в недостаточных дозах или слишком раннее прекращение лечения могут привести к появлению устойчивых штаммов возбудителей, не поддающихся в дальнейшем действию сульфаниламидов.




Хинолин Производные хинолина, используют в медицине (плазмоцид, хинин).плазмоцидхинин Хинин - обладающий жаропонижающим и обезболивающим свойствами, а также выраженным действием против малярийных плазмодиев. Плазмоцид синтетический противомалярийный препарат


А МИНОКИСЛОТЫ Аминокислоты (аминокарбоновые кислоты) органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы. Аминокислоты могут рассматриваться как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминные группы.


П РИМЕНЕНИЕ В МЕДИЦИНЕ. Аминокислоты широко используются в современной фармакологии. Являясь не только структурными элементами белков и других эндогенных соединений, они имеют большое функциональное значение. Некоторые из них выступают в качестве нейромедиаторных веществ. Некоторые аминокислоты нашли самостоятельное применение в качестве лекарственных средств.


Аминокислоты применяют также в качестве парентерального питания больных, то есть минуя желудочно-кишечный тракт, с заболеваниями пищеварительных и других органов; а также для лечения заболеваний печени, малокровия, ожогов (метионин), язв желудка (гистидин), при нервно- психических заболеваниях (глутаминовая кислота и т. п.). Аминокислоты применяются в животноводстве и ветеринарии для питания и лечения животных, а также в микробиологической, медицинской и пищевой промышленности.


Важно принимать аминокислоты с кофакторами, которыми обычно являются витамины, минеральные соли или другие питательные вещества, которые помогают аминокислотам в ходе процессов метаболизма в организме человека. Также важно принимать аминокислоты в комплексе, а не просто какую-то одну аминокислоту, поскольку в действие аминокислот вовлечены сложные метаболические пути, для которых необходимы разные кофакторы и другие аминокислоты.


Л ИТЕРАТУРА 1) iy-tip-okisleniya.html 2)Т.Т.Березов Биологическая химия 3)Б.Ф.Коровкин Биологическая химия

Слайд 2

Дайте свое определение класса. Аминокислоты – гетерофункциональные соединения, которые обязательно содержат две функциональные группы: аминогруппу – NH2 и карбоксильную группу –COOH, связанные с углеводородным радикалом (стр. 220 учебника) Общая формула Аминокислоты – производные кислот, которые можно рассматривать как продукты замещения одного или более атомов водорода в их радикалах на одну или более аминогрупп (“Курс органической химии”, стр.371) NH2 – CH – COOH R

Слайд 3

Аминокислоты. Биологическая роль Аминокислоты, в отличие от ранее изученных органических веществ, содержат две функциональные группы.

Слайд 4

Номенклатура аминокислот Чтобы дать название аминокислотам, необходимо выполнять следующие правила: 1.Найдите главную углеродную цепь – это самая длинная цепь атомов углерода, включающая атом углерода карбонильной группы. 2.Пронумеруйте атомы углерода в главной цепи, начиная с атома углерода карбоксильной группы. 3.Укажите номер атома углерода в главной цепи соединенного со второй функциональной группой – аминогруппой и назовите её. 4.Если имеются другие заместители, то укажите номер атома углерода в главной цепи, у которого есть заместитель, и дайте название заместителю. Если заместителей несколько, расположите их по алфавиту. Перед названием одинаковых заместителей укажите номер атома углерода, с которым они связаны. И используйте умножающие приставки (ди - . три -) 5.В конце названия допишите суффикс – овая и слово кислота.

Слайд 5

По количеству функциональных групп: моноаминомонокарбоновые диаминомонокарбоновые С-С-С-С-С -СООН ׀׀ NH2NH2 лизин По взаимному расположению функциональных групп: α,β , γ… С – С- С – С – СООНС – С- С – С – СООНС – С- С – С – СООН | | | NH2 NH2 NH2 2, 6 – диаминогексановая кислота моноаминодикарбоновые НООС-С-С-С-СООН | NH2 глутаминовая 2-аминопентандиовая кислота

Слайд 6

оптическая изомерия: СН3 | NH2 – C*-Н ׀ СООН изомерия углеродного скелета изомерия положения стр.40 учебника

Слайд 7

Свойства:

1) Растворимость в воде N+H3 – CH – COOH N+H3 – CH – COO - NH2 – CH – COO- ||| RRR 2) С кислотами NH2 – CH2 – COOH + НС| → С| хлорид как основание 3) С основаниями NH2 – CH2 – COOH + Na OH → NH2 – CH2 – COONa + H2O как кислота Физические: сладкие, безвкусные, горькие Почему? Вывод: зависит от радикала Вывод: органические амфотерные соединения 4) Специфическое - взаимодействие между собой NH2 – CH2 – COOH + НNH – CH2 – COOH → NH2 – CH2 – CO- NH – CH2 –COOH пептидная связь Вывод: α-аминокислоты – элементарные частицы природныхполимеров- белков Биполярный ион Химические:

Слайд 8

лабораторный

уксусная кислота →хлоруксусная кислота→аминоуксусная кислота СН3-СООН + Сl2→ СН2-СООН | Cl СН2-СООН + NH3 → СН2-СООН || СlNH2 способы получения гидролиз белков промышленный:

Слайд 9

Образование полипептидов

Слайд 10

Получение аминокислот Составьте схемы возможных способов получения аминокислот. Задание для учащихся. !

Слайд 11

В живых организмах: Природные аминокислоты (около 150) Протеиногенные аминокислоты (около 20) в белках Незаменимые: валин, лейцин, лизин, треонин, цистеин и др. Антибиотики (пенициллин) Полиамидные смолы (капрон, нейлон) *Добавка к корму


Амины органические соединения, являющиеся производными аммиака, в молекуле которого один, два или три атома водорода замещены на углеводородные радикалы. По числу замещённых атомов водорода различают соответственно первичные, (Замещен один атом водорода) вторичные (Замещены два атома водорода из трех) и третичные (Замещены три атома водорода из трех) амины.




Сульфаниламидные препараты (сульфаниламиды) - к ним относятся производные сульфаниловой кислоты, в готовом виде представляют собой белые или слегка желтоватые порошки без запаха и вкуса, плохо растворимые в воде. Их противомикробное действие связано главным образом с тем, что они нарушают процесс получения микробами необходимых для их жизни и развития "ростовых" факторов - фолиевой кислоты и других веществ. Прием сульфаниламидов в недостаточных дозах или слишком раннее прекращение лечения могут привести к появлению устойчивых штаммов возбудителей, не поддающихся в дальнейшем действию сульфаниламидов.




Хинолин Производные хинолина, используют в медицине (плазмоцид, хинин).плазмоцидхинин Хинин - обладающий жаропонижающим и обезболивающим свойствами, а также выраженным действием против малярийных плазмодиев. Плазмоцид синтетический противомалярийный препарат


А МИНОКИСЛОТЫ Аминокислоты (аминокарбоновые кислоты) органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы. Аминокислоты могут рассматриваться как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминные группы.


П РИМЕНЕНИЕ В МЕДИЦИНЕ. Аминокислоты широко используются в современной фармакологии. Являясь не только структурными элементами белков и других эндогенных соединений, они имеют большое функциональное значение. Некоторые из них выступают в качестве нейромедиаторных веществ. Некоторые аминокислоты нашли самостоятельное применение в качестве лекарственных средств.


Аминокислоты применяют также в качестве парентерального питания больных, то есть минуя желудочно-кишечный тракт, с заболеваниями пищеварительных и других органов; а также для лечения заболеваний печени, малокровия, ожогов (метионин), язв желудка (гистидин), при нервно- психических заболеваниях (глутаминовая кислота и т. п.). Аминокислоты применяются в животноводстве и ветеринарии для питания и лечения животных, а также в микробиологической, медицинской и пищевой промышленности.


Важно принимать аминокислоты с кофакторами, которыми обычно являются витамины, минеральные соли или другие питательные вещества, которые помогают аминокислотам в ходе процессов метаболизма в организме человека. Также важно принимать аминокислоты в комплексе, а не просто какую-то одну аминокислоту, поскольку в действие аминокислот вовлечены сложные метаболические пути, для которых необходимы разные кофакторы и другие аминокислоты.


Л ИТЕРАТУРА 1) iy-tip-okisleniya.html 2)Т.Т.Березов Биологическая химия 3)Б.Ф.Коровкин Биологическая химия