Как выглядит электронная формула в химии. Графические изображения формул неорганических соединений

Расположение электронов на энергетических оболочках или уровнях записывают с помощью электронных формул химических элементов. Электронные формулы или конфигурации помогают представить структуру атома элемента.

Строение атома

Атомы всех элементов состоят из положительно заряженного ядра и отрицательно заряженных электронов, которые располагаются вокруг ядра.

Электроны находятся на разных энергетических уровнях. Чем дальше электрон находится от ядра, тем большей энергией он обладает. Размер энергетического уровня определяется размером атомной орбитали или орбитального облака. Это пространство, в котором движется электрон.

Рис. 1. Общее строение атома.

Орбитали могут иметь разную геометрическую конфигурацию:

  • s-орбитали - сферические;
  • р-, d и f-орбитали - гантелеобразные, лежащие в разных плоскостях.

На первом энергетическом уровне любого атома всегда располагается s-орбиталь с двумя электронами (исключение - водород). Начиная со второго уровня, на одном уровне находятся s- и р-орбитали.

Рис. 2. s-, р-, d и f-орбитали.

Орбитали существуют вне зависимости от нахождения на них электронов и могут быть заполненными или вакантными.

Запись формулы

Электронные конфигурации атомов химических элементов записываются по следующим принципам:

  • каждому энергетическому уровню соответствует порядковый номер, обозначаемый арабской цифрой;
  • за номером следует буква, означающая орбиталь;
  • над буквой пишется верхний индекс, соответствующий количеству электронов на орбитали.

Примеры записи:


Электронная конфигурация атома - это численное представление его электронных орбиталей. Электронные орбитали - это области различной формы, расположенные вокруг атомного ядра, в которых математически вероятно нахождение электрона. Электронная конфигурация помогает быстро и с легкостью сказать читателю, сколько электронных орбиталей есть у атома, а также определить количество электронов, находящихся на каждой орбитали. Прочитав эту статью, вы освоите метод составления электронных конфигураций.

Шаги

Распределение электронов с помощью периодической системы Д. И. Менделеева

    Найдите атомный номер вашего атома. Каждый атом имеет определенное число электронов, связанных с ним. Найдите символ вашего атома в таблице Менделеева . Атомный номер - это целое положительное число, начинающееся от 1 (у водорода) и возрастающее на единицу у каждого последующего атома. Атомный номер - это число протонов в атоме, и, следовательно, это еще и число электронов атома с нулевым зарядом.

    Определите заряд атома. Нейтральные атомы будут иметь столько же электронов, сколько показано в таблице Менделеева. Однако заряженные атомы будут иметь большее или меньшее число электронов - в зависимости от величины их заряда. Если вы работаете с заряженным атомом, добавляйте или вычитайте электроны следующим образом: добавляйте один электрон на каждый отрицательный заряд и вычитайте один на каждый положительный.

    • Например, атом натрия с зарядом -1 будет иметь дополнительный электрон в добавок к своему базовому атомному числу 11. Иначе говоря, в сумме у атома будет 12 электронов.
    • Если речь идет об атоме натрия с зарядом +1, от базового атомного числа 11 нужно отнять один электрон. Таким образом, у атома будет 10 электронов.
  1. Запомните базовый список орбиталей. По мере того, как у атома увеличивается число электронов, они заполняют различные подуровни электронной оболочки атома согласно определенной последовательности. Каждый подуровень электронной оболочки, будучи заполненным, содержит четное число электронов. Имеются следующие подуровни:

    Разберитесь в записи электронной конфигурации. Электронные конфигурации записываются для того, чтобы четко отразить количество электронов на каждой орбитали. Орбитали записываются последовательно, причем количество атомов в каждой орбитали записывается как верхний индекс справа от названия орбитали. Завершенная электронная конфигурация имеет вид последовательности обозначений подуровней и верхних индексов.

    • Вот, например, простейшая электронная конфигурация: 1s 2 2s 2 2p 6 . Эта конфигурация показывает, что на подуровне 1s имеется два электрона, два электрона - на подуровне 2s и шесть электронов на подуровне 2p. 2 + 2 + 6 = 10 электронов в сумме. Это электронная конфигурация нейтрального атома неона (атомный номер неона - 10).
  2. Запомните порядок орбиталей. Имейте в виду, что электронные орбитали нумеруются в порядке возрастания номера электронной оболочки, но располагаются по возрастанию энергии. Например, заполненная орбиталь 4s 2 имеет меньшую энергию (или менее подвижна), чем частично заполненная или заполненная 3d 10 , поэтому сначала записывается орбиталь 4s. Как только вы будете знать порядок орбиталей, вы сможете с легкостью заполнять их в соответствии с количеством электронов в атоме. Порядок заполнения орбиталей следующий: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p.

    • Электронная конфигурация атома, в котором заполнены все орбитали, будет иметь следующий вид: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 14 6d 10 7p 6
    • Обратите внимание, что приведенная выше запись, когда заполнены все орбитали, является электронной конфигурацией элемента Uuo (унуноктия) 118, атома периодической системы с самым большим номером. Поэтому данная электронная конфигурация содержит все известные в наше время электронные подуровни нейтрально заряженного атома.
  3. Заполняйте орбитали согласно количеству электронов в вашем атоме. Например, если мы хотим записать электронную конфигурацию нейтрального атома кальция, мы должны начать с поиска его атомного номера в таблице Менделеева. Его атомный номер - 20, поэтому мы напишем конфигурацию атома с 20 электронами согласно приведенному выше порядку.

    • Заполняйте орбитали согласно приведенному выше порядку, пока не достигнете двадцатого электрона. На первой 1s орбитали будут находится два электрона, на 2s орбитали - также два, на 2p - шесть, на 3s - два, на 3p - 6, и на 4s - 2 (2 + 2 + 6 +2 +6 + 2 = 20.) Иными словами, электронная конфигурация кальция имеет вид: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 .
    • Обратите внимание: орбитали располагаются в порядке возрастания энергии. Например, когда вы уже готовы перейти на 4-й энергетический уровень, то сначала записывайте 4s орбиталь, а затем 3d. После четвертого энергетического уровня вы переходите на пятый, на котором повторяется такой же порядок. Это происходит только после третьего энергетического уровня.
  4. Используйте таблицу Менделеева как визуальную подсказку. Вы, вероятно, уже заметили, что форма периодической системы соответствует порядку электронных подуровней в электронных конфигурациях. Например, атомы во второй колонке слева всегда заканчиваются на "s 2 ", а атомы на правом краю тонкой средней части оканчиваются на "d 10 " и т.д. Используйте периодическую систему как визуальное руководство к написанию конфигураций - как порядок, согласно которому вы добавляете к орбиталям соответствует вашему положению в таблице. Смотрите ниже:

    • В частности, две самые левые колонки содержат атомы, чьи электронные конфигурации заканчиваются s-орбиталями, в правом блоке таблицы представлены атомы, чьи конфигурации заканчиваются p-орбиталями, а в нижней части атомы заканчиваются f-орбиталями.
    • Например, когда вы записываете электронную конфигурацию хлора, размышляйте следующим образом: "Этот атом расположен в третьем ряду (или "периоде") таблицы Менделеева. Также он располагается в пятой группе орбитального блока p периодической системы. Поэтому, его электронная конфигурация будет заканчиваться на...3p 5
    • Обратите внимание: элементы в области орбиталей d и f таблицы характеризуются энергетическими уровнями, которые не соответствуют периоду, в котором они расположены. Например, первый ряд блока элементов с d-орбиталями соответствует 3d орбиталям, хотя и располагается в 4 периоде, а первый ряд элементов с f-орбиталями соответствует орбитали 4f, несмотря на то, что он находится в 6 периоде.
  5. Выучите сокращения написания длинных электронных конфигураций. Атомы на правом краю периодической системы называются благородными газами. Эти элементы химически очень устойчивы. Чтобы сократить процесс написания длинных электронных конфигураций, просто записывайте в квадратных скобках химический символ ближайшего благородного газа с меньшим по сравнению с вашим атомом числом электронов, а затем продолжайте писать электронную конфигурацию последующих орбитальных уровней. Смотрите ниже:

    • Чтобы понять эту концепцию, полезно будет написать пример конфигурации. Давайте напишем конфигурацию цинка (атомный номер 30), используя сокращение, включающее благородный газ. Полная конфигурация цинка выглядит так: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 . Однако мы видим, что 1s 2 2s 2 2p 6 3s 2 3p 6 - это электронная конфигурация аргона, благородного газа. Просто замените часть записи электронной конфигурации цинка химическим символом аргона в квадратных скобках (.)
    • Итак, электронная конфигурация цинка, записанная в сокращенном виде, имеет вид: 4s 2 3d 10 .
    • Учтите, если вы пишете электронную конфигурацию благородного газа, скажем, аргона, писать нельзя! Нужно использовать сокращение благородного газа, стоящего перед этим элементом; для аргона это будет неон ().

    С помощью периодической таблицы ADOMAH

    1. Освойте периодическую таблицу ADOMAH. Данный метод записи электронной конфигурации не требует запоминания, однако требует наличия переделанной периодической таблицы, поскольку в традиционной таблице Менделеева, начиная с четвертого периода, номер периода не соответствует электронной оболочке. Найдите периодическую таблицу ADOMAH - особый тип периодической таблицы, разработанный ученым Валерием Циммерманом. Ее легко найти посредством короткого поиска в интернете.

      • В периодической таблице ADOMAH горизонтальные ряды представляют группы элементов, такие как галогены, инертные газы, щелочные металлы, щелочноземельные металлы и т.д. Вертикальные колонки соответствуют электронным уровням, а так называемые "каскады" (диагональные линии, соединяющие блоки s,p,d и f) соответствуют периодам.
      • Гелий перемещен к водороду, поскольку оба этих элемента характеризуются орбиталью 1s. Блоки периодов (s,p,d и f) показаны с правой стороны, а номера уровней приведены в основании. Элементы представлены в прямоугольниках, пронумерованных от 1 до 120. Эти номера являются обычными атомными номерами, которые представляют общее количество электронов в нейтральном атоме.
    2. Найдите ваш атом в таблице ADOMAH. Чтобы записать электронную конфигурацию элемента, найдите его символ в периодической таблице ADOMAH и вычеркните все элементы с большим атомным номером. Например, если вам нужно записать электронную конфигурацию эрбия (68), вычеркните все элементы от 69 до 120.

      • Обратите внимание на номера от 1 до 8 в основании таблицы. Это номера электронных уровней, или номера колонок. Игнорируйте колонки, которые содержат только вычеркнутые элементы. Для эрбия остаются колонки с номерами 1,2,3,4,5 и 6.
    3. Посчитайте орбитальные подуровни до вашего элемента. Смотря на символы блоков, приведенные справа от таблицы (s, p, d, and f), и на номера колонок, показанные в основании, игнорируйте диагональные линии между блоками и разбейте колонки на блоки-колонки, перечислив их по порядку снизу вверх. И снова игнорируйте блоки, в которых вычеркнуты все элементы. Запишите блоки-колонки, начиная от номера колонки, за которым следует символ блока, таким образом: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 6s (для эрбия).

      • Обратите внимание: Приведенная выше электронная конфигурация Er записана в порядке возрастания номера электронного подуровня. Ее можно также записать в порядке заполнения орбиталей. Для этого следуйте по каскадам снизу вверх, а не по колонкам, когда вы записываете блоки-колонки: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 12 .
    4. Посчитайте электроны для каждого электронного подуровня. Подсчитайте элементы, в каждом блоке-колонке которые не были вычеркнуты, прикрепляя по одному электрону от каждого элемента, и запишите их количество рядом с символом блока для каждого блока-колонки таким образом: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 12 5s 2 5p 6 6s 2 . В нашем примере это электронная конфигурация эрбия.

    5. Учитывайте неправильные электронные конфигурации. Существует восемнадцать типичных исключений, относящихся к электронным конфигурациям атомов в состоянии с наименьшей энергией, также называемом основным энергетическим состоянием. Они не подчиняются общему правилу только по последним двум-трем положениям, занимаемым электронами. При этом действительная электронная конфигурация предполагает нахождение электронов в состоянии с более низкой энергией в сравнении со стандартной конфигурацией атома. К атомам-исключениям относятся:

      • Cr (..., 3d5, 4s1); Cu (..., 3d10, 4s1); Nb (..., 4d4, 5s1); Mo (..., 4d5, 5s1); Ru (..., 4d7, 5s1); Rh (..., 4d8, 5s1); Pd (..., 4d10, 5s0); Ag (..., 4d10, 5s1); La (..., 5d1, 6s2); Ce (..., 4f1, 5d1, 6s2); Gd (..., 4f7, 5d1, 6s2); Au (..., 5d10, 6s1); Ac (..., 6d1, 7s2); Th (..., 6d2, 7s2); Pa (..., 5f2, 6d1, 7s2); U (..., 5f3, 6d1, 7s2); Np (..., 5f4, 6d1, 7s2) и Cm (..., 5f7, 6d1, 7s2).
    • Чтобы найти атомный номер атома, когда он записан в форме электронной конфигурации, просто сложите все числа, которые идут за буквами (s, p, d, и f). Это работает только для нейтральных атомов, если вы имеете дело с ионом, то ничего не получится - вам придется добавить или вычесть количество дополнительных или потерянных электронов.
    • Число, идущее за буквой - это верхний индекс, не сделайте ошибку в контрольной.
    • "Стабильности полузаполненного" подуровня не существует. Это упрощение. Любая стабильность, которая относится к "наполовину заполненным" подуровням, имеет место из-за того, что каждая орбиталь занята одним электроном, поэтому минимизируется отталкивание между электронами.
    • Каждый атом стремится к стабильному состоянию, а самые стабильные конфигурации имеют заполненные подуровни s и p (s2 и p6). Такая конфигурация есть у благородных газов, поэтому они редко вступают в реакции и в таблице Менделеева расположены справа. Поэтому, если конфигурация заканчивается на 3p 4 , то для достижения стабильного состояния ей необходимо два электрона (чтобы потерять шесть, включая электроны s-подуровня, потребуется больше энергии, поэтому потерять четыре легче). А если конфигурация оканчивается на 4d 3 , то для достижения стабильного состояния ей необходимо потерять три электрона. Кроме того, полузаполненные подуровни (s1, p3, d5..) являются более стабильными, чем, например, p4 или p2; однако s2 и p6 будут еще более устойчивыми.
    • Когда вы имеете дело с ионом, это значит, что количество протонов не равно количеству электронов. Заряд атома в этом случае будет изображен сверху справа (как правило) от химического символа. Поэтому атом сурьмы с зарядом +2 имеет электронную конфигурацию 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 1 . Обратите внимание, что 5p 3 изменилось на 5p 1 . Будьте внимательны, когда конфигурация нейтрального атома заканчивается на подуровни, отличные от s и p. Когда вы забираете электроны, вы можете забрать их только с валентных орбиталей (s и p орбиталей). Поэтому, если конфигурация заканчивается на 4s 2 3d 7 и атом получает заряд +2, то конфигурация будет заканчиваться 4s 0 3d 7 . Обратите внимание, что 3d 7 не меняется, вместо этого теряются электроны s-орбитали.
    • Существуют условия, когда электрон вынужден "перейти на более высокий энергетический уровень". Когда подуровню не хватает одного электрона до половинной или полной заполненности, заберите один электрон из ближайшего s или p- подуровня и переместите его на тот подуровень, которому необходим электрон.
    • Имеется два варианта записи электронной конфигурации. Их можно записывать в порядке возрастания номеров энергетических уровней или в порядке заполнения электронных орбиталей, как было показано выше для эрбия.
    • Также вы можете записывать электронную конфигурацию элемента, записав лишь валентную конфигурацию, которая представляет собой последний s и p подуровень. Таким образом, валентная конфигурация сурьмы будет иметь вид 5s 2 5p 3 .
    • Ионы не то же самое. С ними гораздо сложнее. Пропустите два уровня и действуйте по той же схеме в зависимости от того, где вы начали, и от того, насколько велико количество электронов.

Запись, отражающая распределение электронов в атоме химического элемента по энергетическим уровням и подуровням, называется электронной конфигурацией этого атома. В основном (невозбужденном) состоянии атома все электроны удовлетворяют принципу минимальной энергии. Это значит, что сначала заполняются подуровни, для которых:

1) Главное квантовое число n минимально;

2) Внутри уровня сначала заполняется s- подуровень, затем p- и лишь затем d- (l минимально);

3) Заполнение происходит так, чтобы (n + l) было минимально (правило Клечковского);

4) В пределах одного подуровня электроны располагаются таким образом, чтобы их суммарный спин был максимален, т.е. содержал наибольшее число неспаренных электронов (правило Гунда).

5) При заполнении электронных атомных орбиталей выполняется принцип Паули. Его следствием является, что энергетическому уровню с номером n может принадлежать не более чем 2n 2 электронов, расположенных на n 2 подуровнях.

В записи электронных формул (или конфигураций), отражающих эту последовательность, первая цифра равна n , буква после нее соответствует l , а правый верхний индекс равен числу электронов в этом состоянии.

Например , цезий (Сs) находится в 6 периоде, его 55 электронов (порядковый номер 55) распределены по 6 энергетическим уровням и их подуровням, соблюдая последовательность заполнения электронами орбиталей получим: 55 Cs 1 s 2 2 s 2 2 p 6 3 s 2 3 p 6 4 s 2 4 p 6 4 d 10 5 s 2 5 p 6 5 d 10 6 s 1

В свою очередь электронная формула лития – 1 s 2 2 s 1 , углерода – 1 s 2 2 s 2 2 p 2 , хлора – 1 s 2 2 s 2 2 p 6 3 s 2 3 p 5 .

Заселенность электронных оболочек может быть представлена в виде квантовых ячеек (квадратов или горизонтальных линий). В отличие от электронных формул, здесь используются не два, а все четыре квантовых числа. Видно, что энергия электронов в многоэлектронных атомах определяется как квантовым числом n , так и l ; электроны отличаются значениями m l , а у спаренных электронов различны только спины. Свободные ячейки в нашем примере означают свободные p -орбитали, которые могут занимать электроны при возбуждении атома (рис. 8).

Рис. 8. Графическое изображение электронной формулы бора.

Исследуя изменение химических свойств элементов в зависимости от величины их относительной атомной массы (атомного веса), Д. И. Менделеев в 1869 г. открыл закон периодичности этих свойств: «Свойства элементов, а потому и свойства образуемых ими простых и сложных тел стоят в периодической зависимости от атомных весов элементов ». Поскольку химические свойства обусловлены строением электронных оболочек атома, периодическая система Менделеева – это естественная классификация элементов по электронным структурам их атомов (прил. 4). Простейшая основа такой классификации – число электронов в нейтральном атоме, которое равно заряду ядра. Но при образовании химической связи электроны могут перераспределяться между атомами, а заряд ядра остается неизменным, поэтому современная формулировка периодического закона гласит: «Свойства элементов находятся в периодической зависимости от зарядов ядер их атомов» .

Это обстоятельство отражено в периодической системе в виде горизонтальных и вертикальных рядов – периодов и групп.

Период – горизонтальный ряд, имеющий одинаковое число электронных уровней, номер периода совпадает со значением главного квантового числа n внешнего уровня (слоя); таких периодов в периодической системе семь. Второй и последующие периоды начинаются щелочным элементом (ns 1) и заканчивается благородным газом (ns 2 np 6).

По вертикали периодическая система подразделяется на восемь групп, которые делятся на главные – А , состоящие из s - и p -элементов, и побочные – B-подгруппы , содержащие d -элементы. Подгруппа III B, кроме d -элементов, содержит по 14 4f - и 5f -элементов (семейства 4f -лантаноидов и 5f -актиноидов). Главные подгруппы содержат на внешнем электронном слое одинаковое число электронов, которое равно номеру группы. В главных подгруппах валентные электроны (электроны, способные образовывать химические связи) расположены на s - и p -орбиталях внешнего энергетического уровня, в побочных – на s -орбиталях внешнего и d -орбиталях предвнешнего слоя. Для f -элементов валентными являются (n – 2)f - (n – 1)d - и ns -электроны. Сходство элементов внутри каждой группы – наиболее важная закономерность в периодической системе. Следует, кроме того, отметить такую закономерность, как диагональное сходство у пар элементов Li и Mg, Be и Al, B и Si и др. Эта закономерность обусловлена тенденцией смены свойств по вертикали (в группах) и их изменением по горизонтали (в периодах).

Структура электронной оболочки атомов элемента изменяется периодически с ростом порядкового номера элемента, с одной стороны, и, с другой стороны, свойства определяются строением электронной оболочки и, следовательно, находятся в периодической зависимости от заряда ядра атома.

Периодичность атомных характеристик

Периодический характер изменения химических свойств атомов элементов зависит от изменения радиуса атома и иона.

За радиус свободного атома принимают положение главного максимума плотности внешних электронных оболочек. Это так называемый орбитальный радиус . Если рассматривать относительные величины атомных радиусов, то легко обнаружить периодичность их зависимости от номера элемента.

В периодах орбитальные атомные радиусы по мере увеличения заряда ядра Z в общем монотонно уменьшаются из-за роста степени взаимодействия внешних электронов с ядром. В подгруппах радиусы в основном увеличиваются из-за возрастания числа электронных оболочек.

У s - и p -элементов изменение радиусов, как в периодах, так и в подгруппах более выражены, чем у d - и f -элементов, так как d - и f -электроны внутренние. Уменьшение радиусов у d - и f-элементов в периодах называется d - и f -сжатием . Следствием f -сжатия является то, что атомные радиусы электронных аналогов d -элементов пятого и шестого периодов практически одинаковы.

Эти элементы из-за близости их свойств называются элементами-близнецами.

Образование ионов приводит к изменению ионных радиусовпо сравнению с атомными. При этом радиусы катионов всегда меньше, а радиусы анионов всегда больше соответствующих атомных радиусов.

Свойства атомов рассматриваются, как способность отдавать, или принимать электроны из-за стремления атомов приобрести устойчивую электронную конфигурацию, аналогичную инертным газам. Металлические свойства рассматриваются, как способность атомов элементов отдавать электроны и проявлять восстановительные свойства, а неметаллические свойства – присоединять электроны и проявлять окислительные свойства.

Энергией ионизации атома I называется энергия, необходимая для перевода нейтрального атома в положительно заряженный ион. Ее величина зависит от величины заряда ядра, от радиуса атома и от взаимодействия между электронами. Энергия ионизации выражается в кДж∙моль –1 или эВ. Для химических исследований наибольшее значение имеет потенциал ионизации первого порядка – энергия, затрачиваемая на полное удаление слабосвязанного электрона из атома в невозбужденном, состоянии.

Э о – e – = Э + , I 1 – первый потенциал ионизации;

Э + – e – = Э 2+ , I 2 – второй потенциал ионизации и т.д. I 1 < I 2 < I 3 < I 4 ...

Энергия ионизации определяет характер и прочность химической связи, и восстановительные свойства элементов (табл. 28).

Алгоритм составления электронной формулы элемента:

1. Определите число электронов в атоме используя Периодическую таблицу химических элементов Д.И. Менделеева .

2. По номеру периода, в котором расположен элемент, определите число энергетических уровней; число электронов на последнем электронном уровне соответствует номеру группы.

3. Уровни разбить на подуровни и орбитали и заполнить их электронами в соответствии с правилами заполнения орбиталей :

Необходимо помнить, что на первом уровне находится максимум 2 электрона 1s 2 , на втором - максимум 8 (два s и шесть р: 2s 2 2p 6 ), на третьем - максимум 18 (два s , шесть p , и десять d: 3s 2 3p 6 3d 10 ).

  • Главное квантовое число n должно быть минимально.
  • Первым заполняется s- подуровень, затем р-, d- b f- подуровни.
  • Электроны заполняют орбитали в порядке возрастания энергии орбиталей (правило Клечковского).
  • В пределах подуровня электроны сначала по одному занимают свободные орбитали, и только после этого образуют пары (правило Хунда).
  • На одной орбитали не может быть больше двух электронов (принцип Паули).

Примеры.

1. Составим электронную формулу азота. В периодической таблице азот находится под №7.

2. Составим электронную формулу аргона. В периодической таблице аргон находится под №18.

1s 2 2s 2 2p 6 3s 2 3p 6 .

3. Составим электронную формулу хрома. В периодической таблице хром находится под №24.

1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5

Энергетическая диаграмма цинка.

4. Составим электронную формулу цинка. В периодической таблице цинк находится под №30.

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10

Обратим внимание, что часть электронной формулы, а именно 1s 2 2s 2 2p 6 3s 2 3p 6 - это электронная формула аргона.

Электронную формулу цинка можно представить в виде.

    Задача составления электронной формулы химического элемента не самая простая.

    Итак, алгоритм составления электронных формул элементов такой:

    • Сначала записываем знак хим. элемента, где внизу слева от знака указываем его порядковый номер.
    • Далее по номеру периода (из которого элемент) определяем число энергетических уровней и рисуем рядом со знаком хим-го элемента такое количество дуг.
    • Затем по номеру группы число электронов на внешнем уровне, записываем под дугой.
    • На 1 — ом уровне максимально возможно 2е, на втором уже 8, на третьем — целых 18. Начинаем ставить числа под соответствующими дугами.
    • Число электронов на предпоследнем уровне нужно рассчитывать так: из порядкового номера элемента отнимается число уже проставленных электронов.
    • Остается превратить нашу схему в электронную формулу:

    Вот электронные формулы некоторых химических элементов:

    1. Пишем химический элемент и его порядковый номер.Номер показывает кол-во электронов в атоме.
    2. Составляем формулу. Для этого нужно узнать количество энергетических уровней, основой для определения берется номер периода элемента.
    3. Разбиваем уровни на под уровни.

    Ниже можно увидеть пример, как правильно составлять электронные формулы химических элементов.

  • Составить электронные формулы химических элементов нужно таким способом: нужно посмотреть номер элемента в таблице Менделеева, таким образом узнать сколько у него электронов. Затем нужно узнать количество уровней, который равен периоду. Затем пишутся подуровни и они заполняются:

    Первым делом вам надо определить число атомов согласно таблицы Менделеева.

    Для составления электронной формулы вам понадобится периодическая система Менделеева. Находите ваш химический элемент там и смотрите период — он будет равен числу энергетических уровней. Номер группы будет соответствовать численно количеству электронов на последнем уровне. Номер элемента будет количественно равен числу его электронов.Так же вам четко надо знать, что на первом уровне есть максимум 2 электрона, на втором — 8, на третьем — 18.

    Это основные моменты. Ко всему прочему в интернете (в том числе и нашем сайте) вы можете найти информацию с уже готовой электронной формулой для каждого элемента, так вы сможете проверить себя.

    Составление электронных формул химических элементов очень даже сложный процесс, без специальных таблиц тут не обойтись, да и формул нужно применять целую кучу. Вкратце для составления нужно пройти по этим этапам:

    Нужно составить орбитальную диаграмму, в которой будет понятие отличия электронов друг от друга. В диаграмме выделяются орбитали и электроны.

    Электроны заполняются по уровням, снизу в верх и имеют несколько подуровней.

    Итак вначале узнам общее количество электронов заданного атома.

    Заполняем формулу по определнной схеме и записываем — это и будет электронной формулой.

    Например у Азота эта формула выглядит так, сначала разбираемся с электронами:

    И записываем формулу:

    Чтобы понять принцип составления электронной формулы химического элемента , для начала нужно определить по номеру в таблице Менделеева общее количество электронов в атоме. После этого нужно определить число энергетических уровней, взяв за основу номер периода, в котором находится элемент.

    После этого уровни разбиваются на подуровни, которые заполняют электронами, основываясь на Принципе наименьшей энергии.

    Можно проверить правильность своих рассуждений, заглянув, например, сюда .

    Составив электронную формулу химического элемента, можно узнать, сколько электронов и электронных слоев в конкретном атоме, а также порядок их распределения по слоям.

    Для начала определяем порядковый номер элемента по таблице Менделеева, он соответствует числу электронов. Количество электронных слоев указывает на номер периода, а количество число электронов на последнем слое атома соответствует номеру группы.

    • сначала заполняем s-подуровень, а потом р-, d- b f-подуровни;
    • по правилу Клечковского электроны заполняют орбитали в порядке возрастания энергии этих орбиталей;
    • по правилу Хунда электроны в пределах одного подуровня занимают свободные орбитали по одному, а потом образуют пары;
    • по принципу Паули на одной орбитали больше 2 электронов не бывает.
  • Электронная формула химического элемента показывает сколько электронных слоев и сколько электронов содержится в атоме и как они распределены по слоям.

    Чтобы составить электронную формулу химического элемента, нужно заглянуть в таблицу Менделеева и использовать полученные сведения для данного элемента. Порядковый номер элемента в таблице Менделеева соответствует количеству электронов в атоме. Число электронных слоев соответствует номеру периода, число электронов на последнем электронном слое соответствует номеру группы.

    Необходимо помнить, что на первом слое находится максимум 2 электрона 1s2, на втором — максимум 8 (два s и шесть р: 2s2 2p6), на третьем — максимум 18 (два s, шесть p, и десять d: 3s2 3p6 3d10).

    Например, электронная формула углерода: С 1s2 2s2 2p2 (порядковый номер 6, номер периода 2, номер группы 4).

    Электронная формула натрия: Na 1s2 2s2 2p6 3s1 (порядковый номер 11, номер периода 3, номер группы 1).

    Для проверки правильности написания электронной формулы можно заглянуть на сайт www.alhimikov.net.

    Составление электронной формулы хим.элементов на первый взгляд может показаться довольно сложным занятием, однако все станет понятно, если придерживаться следующей схемы:

    • сперва пишем орбитали
    • вставляем перед орбиталями числа, которые указывают номер энергетического уровня. Не забываем формулу для определения максимального количества электронов на энергетическом уровне: N=2n2

    А как узнать число энергетических уровней? Просто посмотрите таблицу Менделеева: это число равно номеру периода, в котором данный элемент находится.

    • над значком орбитали пишем число, которое обозначает количество электронов, которые находятся на этой орбитали.

    Например, электронная формула скандия будет выглядеть таким образом.