Рассуждения о телевизионных камерах. Технические параметры камер и их значения Определение разрешающей способностью по значению глубины модуляции


1) Необходимо выбрать внутренние и внешние камеры видеонаблюдения . Для начала надо понять какие камеры мы хотим использовать цветные или чернобелые? Черно-белые обладают большей чувствительностью и дешевле цветных, с другой стороны у цветных камер можно больше снять информации с объекта слежения. При установке цветных камер на лестничной клетке при плохой освещенности, может получится что они не будут переключаться в цветной режим, т.е. им не будет хватать света для преодоления порога переключения, в этом случае нет необходимости в покупке цветных видеокамер.

  • Выбор матрицы видеокамеры (CCD или CMOS). В настоящий момент камеры видеонаблюдения используют 2 типа матриц: ПЗС (CCD) и КМОП (CMOS) . Для преобразования света в электрические заряды и ПЗС-, и КМОП- матрицы используют фотоэлементы. Различие же между этими матрицамизаключается в том, как потом полученные электрические заряды считываются.
Преимущества ПЗС – Высокая светочувствительность. Фотоэлемент ПЗС-матрицы обладает большей площадью, чем элемент матрицы КМОП. Каждый фотодиод КМОП-матрицы имеет транзистор и «обвязку» из сопутствующих элементов, которые забирают довольно большую площадь. Другими словами, ПЗС-матрица воспринимает больше света, чем КМОП-матрица, у которой большая площадь матрицы просто не чувствительна к свету. Следует сказать, однако, что технологии КМОП-матриц активно развиваются и на рынке появляются все более и более чувствительные матрицы, постепенно догоняя матрицы ПЗС. В настоящий момент существуют две основные технологии КМОП-матриц – это Active Pixel Sensor (APS) и Active Column Sensor (ACS). Низкий уровень шумов. По сравнению с КМОП ПЗС-матрица имеет минимальное количество активных электронных элементов, которые в результате нагрева могли бы вызвать тепловой шум в кадре. Преимущества КМОП – Разрешение. В настоящее время доступны относительно недорогие КМОП-матрицы разрешением 10 Мпикселей и более. При этом максимальное разрешение ПЗС матриц, используемыхв CCTV, составляет всего 1 мегапиксель. Низкая стоимость КМОП матриц. Камеры, использующие КМОП существенно дешевле аналогов на ПЗС. Компактные размеры и меньшее энергопотребление позволяют существенно уменьшать габариты камер. Физический размер матрицы определяется длиной диагонали в дюймах. Современные матрицы могут иметь следующие размеры: 2/3; 1/2,7; 1/3 и 1/4. Чем больше физический размер матрицы, тем больше света приходится на каждый пиксель, что положительно влияет на чувствительность камеры.
  • Процессор обработки видеосигнала присутствует во всех аналоговых CCTV камерах. Это важнейший модуль, который производит первичную обработку видеосигнала: корректирует яркость, цветность, контрастность изображения, а также выполняет более сложные операции. Вот некоторые популярные функции, выполняемые процессором обработки видеосигнала:
AGC (Automatic Gain Control) – автоматическая регулировка усиления (АРУ) позволяет усилить сигнал и получить приемлемую картинку при низкой освещенности. Обычно диапазон регулировки ограничивается 10-кратным усилением, так как большее усиление приводит к значительному зашумлению видеосигнала. AWB (Automatic White Balance), или AWC (Automatic White Compensation) , автоматическая регулировка баланса белого цвета для нормализации цветопередачи. BLC (Back Light Compensation) / SBLC (SuperBLC) – компенсация фоновой засветки, которая позволяет выровнять освещенность объекта в условиях яркого заднего фона. DNR/SDNR (Digital Noise Reduction/ Super Digital Noise Reduction) – цифровой алгоритм подавления шумов. WDR (Wide Dynamic Range) – расширенный динамический диапазон для получения качественной картинки в условиях, когда одна часть кадра темная, а вторая – очень яркая.
  • Светочувствительность (Лк) на сегодняшний день является одним из самых важных параметров при выборе камеры. При выборе камеры, прежде всего, нужно, конечно, обращать внимание на чувствительность,
    заявленную в спецификации. Уровень минимально необходимой освещенности измеряется в люксах. 1 люкс означает, что камера будет что-то показывать в сумерках, однако ночью без хорошей искусственной подсветки она ничего не “увидит”. Приемлемые показатели для камеры, которая будет устанавливаться на улицу – это 0.01 лк и ниже. В таблице приведены некоторые ориентиры для сравнения:

Однако количество «люксов» довольно непросто измерить, поэтому не всегда указанная в спецификации чувствительность, отражает реальные возможности камеры. Для того чтобы составить впечатление о чувствительности камеры нужно обратить внимание на размер матрицы, а также – на ее тип. Чем больше размер, тем лучше; CCD лучше, чем CMOS; ACS КМОП лучше, чем APS КМОП. Но самый надежный и рекомендуемый способ – это, конечно, провести тестирование, записав несколько тестовых роликов движущихся объектов в условиях недостаточной освещенности.

Важно понимать, что в условиях недостаточной освещенности разрешающая способность камеры существенно ухудшается. Помимо этого появляется эффект «смазывания» движущихся объектов из-за увеличенной выдержки. Обычно, когда уровень освещенности снижается до заявленной чувствительности камеры, качество картинки падает до неприемлемого уровня.

  • Фокусное расстояние или «угол обзора» (F=) – это расстояние от главной точки объектива до точки фокусировки лучей. Для нас важно понимать, что фокусное расстояние определяет угол захвата сцены. Чем больше фокусное расстояние, тем меньше угол и больше видимое приближение. Вариофокальный объектив , или объектив с переменным фокусным расстоянием, имеет возможность менять фокусное расстояние и, соответственно, углы. Существует ряд платных и бесплатных программ, которые помогут перевести миллиметры фокусного расстояния в углы.


  • Разрешающая способность телекамеры (ТВЛ). Вопрос о разрешении телекамеры прост, но часто его неправильно понимают. Когда речь идет о разре­шающей способности системы видеонаблюдения (телекамера-линия связи-устройство записи-мони- тор), то основной частью системы будет устройство ввода (то есть в большинстве случаев разрешаю­щая способность системы будет во многом определяться разрешающей способностью телекамеры). Существует разрешающая способность по вертикали и разрешающая способность по горизонтали. Эти параметры измеряются по испытательной таблице.

Разрешающая способность по вертикали - это максимальное число горизонтальных линий, которое способна передать телекамера. Это число ограничено стандартом CCIR/PAL до 625 горизонтальных строк и стандартом EIA/NTSC до 525 строк. Реальное вертикальное разрешение (в обоих случаях) далеко от этих значений.

Разрешающая способность по горизонтали - это максимальное число вертикальных линий, кото­рые способна передать телекамера (В тех случаях, когда в документации указана только разрешающая способность, то это надо пони­мать, как разрешающая способ­ность погоризонтали). Горизонтальное разрешение ПЗС-телекамер обычно равно 75% горизонтальных пикселов ПЗС-матрицы. Как объяснялось выше, это результат соотноше­ния сторон 4:3. В частности, подсчитывая вертикальные ли­нии в целях определения гори­зонтального разрешения, мы считаем только горизонтальную ширину, эквивалентную высоте монитора по вертикали. Идея в основе сего - получить линии равной толщины, как по верти­кали, так и по горизонтали. Итак, если мы подсчитаем общее количество вертикальных линий по ширине монитора, то их надо умножить на 3/4 или 0.75. Поскольку это необычный расчет, то мы обычно называем горизонтальное разрешение ТВ-линиями (TBЛ) , а не просто линиями. Максимальная разрешающая способность в аналоговых камерах составляет 600ТВЛ.

Практический опыт показывает, что человеческий глаз с трудом различает разницу в разрешающей способности, если она составляет менее 50 линий. Это не означает, что разрешающая способность не является важным фактором в определении качества телекамеры, просто небольшая разница в разрешении едва заметна, особенно если она меньше 10% общего числа пикселов.

Цветные телекамеры с одной ПЗС-матрицей (используемые в системах видеонаблюдения) имеют меньшую разрешающую способность, чем черно-белые, из-за деления на три цветовых компонен­та при том, что размеры этих ПЗС-матриц такие же, как у черно-белых телекамер. Трехматричные цветные телекамеры, используемые в телевещании, могут иметь гораздо более высокое разреше­ние. Появились телекамеры высокой четкости, где три 1-дюймовые матрицы дают горизонтальное разрешение, близкое к 1000 ТВЛ.

    Отношение сигнал/шум (S/N). Отношение сигнал/шум выражается в децибелах (дБ). Отношение сигнал/шум показывает, насколько хорош может быть видеосигнал телекамеры, осо­бенно в условиях низкой освещенности. Шума избежать невозможно, но его можно минимизиро­вать. В основном, он зависит от качества ПЗС-матрицы, электроники и внешних электромагнитных воздействий, но также в сильной степени и от температуры электроники. Металлический корпус телекамеры в значительной степени защищает от внешних электромагнитных воздействий (Строго говоря, внешние электромагнитные воздействия, как правило, являются стационарными процес­сами, поэтому их нельзя относить к шумам; их и называют наводками или помехами. Прим. ред.). Источниками шума внутри телекамеры являются как пассивные, так и активные компоненты, поэто­му «зашумленность» зависит от их качества, конструкции системы и в сильной степени от температуры.

Шум в изображении аналогичен по природе шуму в аудиозаписях. На экране зашумленное изобра­жение дает зернистость или снег, а на цветном изображении могут быть цветовые вспышки. Силь­но зашумленные видеосигналы бывает трудно синхронизировать, изображение может получиться нечетким, с плохим разрешением. Зашумленное изображение от телекамеры становится еще хуже при уменьшении освещенности объекта, а также при использовании АРУ с большим усилением.

Отношение сигнал/шум ПЗС-телекамеры определяется как отношение сигнала к шуму, производимому матрицей и электроникой телекамеры. Чтобы получить реальное отноше­ние сигнал/шум телекамеры, все внутренние цепи (так или иначе влияющие на сигнал) долж­ны быть отключены, включая гамма-коррек­цию, АРУ, электронный затвор и схему компен­сации встречной засветки. Температура долж­на быть на уровне комнатной.

Для ПЗС-телекамер в видеонаблюдении отноше­ние сигнал/шум более 48 дБ считается хорошим. Следует помнить, что изменение отношения сигнал/шум на 3 дБ означает примерно 30-процентное уменьшение шума, так как уровень видеосигнала не меняется. И при сравнении телекамеры, у кото­рой сигнал/шум равен 48 дБ, с телекамерой, у которой, например, эта величина равна 51 дБ, послед­няя даст значительно лучшее изображение, что будет особенно заметно при низких уровнях освещен­ности. Говоря об отношении сигнал/шум, мы всегда полагаем, что АРУ отключена. Если не допускать значительного нагрева телекамеры, то шум будет меньше.

Для сравнения приведем такую величину: ПЗС-телекамеры в телевещании имеют отношение сигнал/шум более 56 дБ, что чрезвычайно хорошо для аналогового видеосигнала.

Основные задачи камеры - захват изображений, разбиение их на ряд неподвижных кадров и строк, передача и быстрое воспроизведение на экране, в результате чего человеческий глаз воспринимает их как движущееся изображение.

Невозможно судить о телекамере на основе только одной или двух характеристик, взятыхиз инструкции.

Различные производители используют различные критерии и методы оценки, и в большинстве случаев, даже если мы знаем, как интерпретировать все числа из технического паспорта, нам все же приходится самим оценивать качество изображения, сравнивая его с изображением, даваемым другой камерой.

Сравнительный тест - это зачастую наилучший и единственный объективный способ проверки характеристик телекамеры - вертикального ореола, шума, чувствительности и пр.

Не забывайте, что общее впечатление о хорошем качестве изображения создается комбинацией многих факторов: разрешающей способности, ореола, чувствительности, шума, гамма-коррекции и пр. Человеческий глаз не одинаково чувствителен ко всем этим факторам. Люди, не обладающие достаточным опытом, будут удивлены, узнав, что разница в разрешающейспособности в 50 ТВЛ иногда менее важна для качества изображения, чем, например, правильная установка гамма-коррекции или разница в 3 дБ в отношении сигнал/шум.
Рассмотрим некоторые наиболее важные характеристики:

  1. Чувствительность;
  2. Минимальная освещенность;
  3. Разрешающая способность;
  4. Отношение сигнал/шум;
  5. Динамический диапазон.

Чувствительность
Чувствительность телекамеры, четко определенная в широковещательном ТВ, в видеонаблюдении часто понимается неверно, ее обычно путают с минимальной освещенностью.

Чувствительность характеризуется минимальным отверстием диафрагмы (максимальным F-числом), дающим видеосигнал полного размаха 1 В на тестовой таблице, освещенность которой равна точно 2000 лк и создана источником с цветовой температурой 3200° К.
Одна из стандартных тестовых таблиц для этих целей - это градационная испытательная таблица. Она должна иметь шкалу градаций яркости от черного до белого и общий коэффициент отражения 90% для белой части этой шкалы.

Пример универсальной таблицы предназначеной для оцен­ки работы телекамер, в том числе и цветных.

Проведением таких тестирований занимаются специалисты с применением профессионального оборудования.

Минимальная освещенность
В видеонаблюдении не существует четкого определения минимальной освещенности, в отличие от чувствительности телекамеры. Обычно этот термин относят к наименьшей освещенности на объекте, при которой данная телекамера дает распознаваемый видеосигнал. Поэтому данная характеристика выражается в люксах на объекте, при которых получается данный видеосигнал.

Одна из самых больших «уловок» в видеонаблюдении -одни производители дают минимальную освещенность на объекте, а другие имеют в виду минимальную освещенность ПЗС-матрицы. Это далеко не одно и то же. Когда определяется минимальная освещенность камеры (освещенность объекта), должно также указываться соответствующее F-число. Вторым важным фактором после освещенности, который тоже необходимо знать, является коэффициент отражения объекта в процентах.

Если указывается минимальная освещенность на ПЗС-матрице, можно учитывать не все факторы (такие, как отражение и пропускание объектива). Тогда при расчете эквивалентной освещенности объекта, проецируемого на ПЗС-матрицу, мы должны компенсировать все эти факторы.

Например: С объективом F/1.4 минимальная освещенность ПЗС-матрицы обычно в 10 раз выше (меньше люкс), чем чувствительность на объекте. Например, освещенность объекта в 1лк при отражении 75% с объективом F/1.4 соответствует освещенности в 0.1 лк на ПЗС-матрице.

Вышесказанное приводит к такому выводу: реальные характеристики телекамеры можно легко скрыть, просто не указывая некоторые факторы. Внимательно читайте спецификации. А также известный факт - черно-белые ПЗС-телекамеры всегда имеют более низкую минимальную освещенность, чем цветные ПЗС-телекамеры.

Разрешающая способность телекамеры.
Вопрос о разрешении телекамеры прост, но часто его неправильно понимают. Когда речь идет о разрешающей способности системы видеонаблюдения, то основной частью системы будет устройство ввода (то есть в большинстве случаев разрешающая способность системы будет во многом определяться разрешающей способностью камеры). Существует разрешающая способность по вертикали и разрешающая способность по горизонтали. Эти параметры измеряются по испытательной таблице. Разрешающая способность по вертикали - это максимальное число горизонтальных линий, которое способна передать телекамера. Это число ограничено стандартом CCIR/PAL и стандартом EIA/NTSC.

Отношение сигнал/шум
Отношение сигнал/шум показывает, насколько хорош может быть видеосигнал камеры, особенно в условиях низкой освещенности. Шума избежать невозможно, но его можно минимизировать. В основном, он зависит от качества ПЗС-матрицы, электроники и внешних электромагнитных воздействий, но также в сильной степени и от температуры электроники. Металлический корпус камеры в значительной степени защищает от внешних электромагнитных воздействий (Строго говоря, внешние электромагнитные воздействия, как правило, являются стационарными процессами, поэтому их нельзя относить к шумам; их и называют наводками или помехами). Источниками шума внутри телекамеры являются как пассивные, так и активные компоненты, поэтому «зашумленность» зависит от их качества, конструкции системы и в сильной степени от температуры. Вот почему, указывая отношение сигнал/шум, производитель должен также указать и температуру, при которой проводились измерения.

Шум в изображении аналогичен по природе шуму в аудиозаписях. На экране зашумленное изображение дает зернистость или снег, а на цветном изображении могут быть цветовые вспышки. Сильно зашумленные видеосигналы бывает трудно синхронизировать, изображение может получиться нечетким, с плохим разрешением. Зашумленное изображение от телекамеры становится еще хуже при уменьшении освещенности объекта, а также при использовании АРУ с большим усилением.

Отношение сигнал/шум выражается в децибелах (дБ).
Децибелы - это относительные единицы. Отношение выражается не в виде абсолютной величины, а в форме логарифма. Причина проста: логарифмы позволяют переводить большие отношения чисел к двух-трехзначным числам, но что более важно, преобразование сигнала (при вычислении затухания или усиления системы) сводится к простому сложению или умножению.

Динамический диапазон ПЗС-матрицы
Динамический диапазон нечасто упоминается в технических характеристиках камер систем видеонаблюдения. Однако, это очень важная деталь, характеризующая эффективность камеры. Динамический диапазон ПЗС-матрицы определяется как максимальный сигнал накопления (насыщенная экспозиция), деленный на общее среднеквадратическое значение шума эквивалентной экспозиции. Динамический диапазон аналогичен отношению сигнал/шум, но относится только к динамике ПЗС-матрицы при обработке темных и ярких объектов в пределах одной сцены. Отношение сигнал/шум относится к полному сигналу, включая электронные схемы камеры, выражается в дБ, а динамический диапазон - это отношение, не логарифм.

Это число показывает световой диапазон, обрабатываемый ПЗС-матрицей, только этот диапазон выражается не в фотометрических единицах, а в значениях сформированного электрического сигнала. Он начинается с очень низких уровней света, равных среднеквадратическому значению шума ПЗС-матрицы и доходит до уровня насыщенности. Поскольку это отношение двух значений напряжения, то величина безразмерная, обычно порядка нескольких тысяч.

Автодиафрагма оптически блокирует избыточный свет и снижает его до верхнего уровня ПЗС-матрицы. Когда достигается уровень насыщения при экспозиции ПЗС-матрицы (1/50 с в PAL и 1/60 с в NTSC), может проявиться эффект «заплывания» (blooming), когда избыточный свет насыщает не только те элементы изображения (пикселы), на которые он падает, но и соседние тоже. В результате у телекамеры снижается разрешающая способность и детальная информация в ярких зонах. Чтобы решить эту проблему, во многих ПЗС-матрицах была разработана специальная секция (anti-blooming). Эта секция ограничивает количество зарядов, которые могут собираться на каждом пикселе. Если эта секция спроецирована нормально, ни один пиксел не может аккумулировать больший заряд, чем могут передать сдвиговые регистры. Итак, даже если динамический диапазон такого сигнала ограничен, детали в ярких областях изображения не теряются. Это может оказаться чрезвычайно важным в сложных условиях освещения: если телекамера «смотрит» на свет фар автомобиля или ведется наблюдение в коридорах на фоне яркого света.

Качество изображения, получаемого цифровым фотоаппаратом, зависит от используе­мой оптической системы и от светочувствительности матрицы, которая, в свою очередь, определяется количеством элементов CCD-матрицы. Первые цифровые камеры имели около 300 тысяч таких элементов. В современных моделях число элементов достигает 6 миллионов.

Разрешающая способность или оптическое разрешение цифрового фотоаппарата осно­вывается на количестве горизонтальных и вертикальных элементов изображения, кото­рые он может захватить. Эти элементы изображения называются пикселами. Чем больше количество пикселов по горизонтали и вертикали может быть захвачено, тем выше раз­решающая способность камеры и, следовательно, более четким получается изображение и более мягкими цветовые переходы.

Обычно разрешение цифрового фотоаппарата соответствует количеству элементов CCD-матрицы. Например, матрица камеры Contax N Digital SLR, размер кадра которой совпа­дает с размером кадра стандартной 35-миллиметровой пленки, содержащая 6 миллионов элементов (6 мегапикселов), обеспечивает разрешение 3040x2008, т.е. 3040 пикселов по горизонтали и 2008 пикселов по вертикали. Если перемножить эти числа, то получится приблизительно 6 миллионов. Количество элементов матрицы является основной харак­теристикой цифрового фотоаппарата.

Камеры с CCD-матрицами, содержащими более 3 миллионов элементов, позволяют по­лучать снимки с максимальным разрешением 2048x1536 пикселов. Такое разрешение считается высоким и необходимо только для печати. Для просмотра на экране достаточ­ным будет разрешение 1024x768, а иногда и 640x480.

Но в некоторых случаях камера может делать снимки с более высоким разрешением, чем это возможно для данной матрицы. Например, камера AGFA ePhoto 1680 с CCD- матрицей из 1,3 миллиона элементов может выполнять снимки с разрешением 1600x1200 пикселов.

Перемножение 1600 на 1200 дает 1,92 миллиона пикселов. В этом случае возможность получения разрешения выше оптического обеспечивается программным путем, с использованием специальной технологии PhotoGenie, за счет интерполяции, т.е. введения дополнительных точек между фактическими. Их цвет определяется соседними точками. Разрешение, получаемое этим методом, в отличие от оптическо­го, называется интерлейсным.

Следует понимать: чем выше разрешение фотокамеры - тем отпечаток большего размера - и лучшего качества можно получить при печати на принтере или использовании фото в полиграфии.

Для получения наилучшего качества печатного оттиска, используемого в полиграфии, разрешение изображения должно в 1,5 раза превышать час­тоту полутонового растра (линиатуру), используемую при печати. Высококачественные изображения в полиграфии печатаются с линиатурой 150 Ipi (линий на дюйм) и выше. Это значит, что если планируется напечатать снимок в журнале, то его разрешение должно быть не менее чем 225 ppi (точек на дюйм). Если предполагается напечатать фотографию с таким разрешением размером 18x13 см, или, что то же самое, 7,10x5,12 дюйма, то, умножив эти значения на 225, получите требуемую для такого снимка разрешающую способность камеры: 7,10x225=1597; 5,12x225=1152. Это значит, что для поставленной задачи вполне пригодна камера со стандартным оптическим раз­решением 1600x1200 и выше. Если же вам потребуется печатать снимки высокого каче­ства большего размера, чем 18x13, то придется использовать фотоаппарат с более высо­ким оптическим разрешением. При использовании камеры с максимальным разрешени­ем 640x480 пикселов оптимальный размер изображения с разрешением 225 ppi будет равен 2,84x2,13 дюйма (640:225=2,84, 480:225=2,13) или 7,2x5,4 см. При­веденные расчеты касаются подготовки фотографий для полиграфического воспроизве­дения. Для качественной печати на принтерах Epson, например, достаточно разрешения 150 ppi, при котором большинство зрителей не сможет увидеть никаких артефактов. Это достигнуто технологией печати.

Разрешение определяет степень детализации изображения, формируемого камерой видеонаблюдения, причем этот параметр определяется несколькими факторами:

  • характеристиками матрицы камеры,
  • объективом (его качеством, фокусным расстоянием),
  • дистанцией до наблюдаемого объекта.

Ниже будут рассмотрены все эти моменты, однако, следует иметь ввиду, что разрешение системы видеонаблюдения в целом определяется также другими устройствами, например:

  • записи (видеорегистратор, видеосервер),
  • отображения (монитор).

Несмотря на то, что разрешающая способность камеры видеонаблюдения определяется количеством пикселей ее матрицы для аналоговых видеокамер она указывается в ТВЛ (телевизионных линиях). Эта величина определяется с помощью специальной таблицы, означает сколько чередующихся черно - белых полос видеокамера может воспроизвести по вертикали или горизонтали (рис.1).

Условно АНАЛОГОВЫЕ КАМЕРЫ можно подразделить на устройства стандартного (380-420 ТВЛ, что соответствует примерно 500 пикселям по горизонтали) и высокого (560-600 ТВЛ - около 750 пикселей) разрешения. Правда, сейчас производятся видеокамеры с разрешением порядка 1000 ТВЛ.

Разрешение IP КАМЕР определяется как произведение количества пикселей по горизонтали и вертикали матрицы (рис.2). Измеряется оно в мегапикселях. В паспортных данных указывается именно произведение. Для того, чтобы отдельно определить разрешение по горизонтали и вертикали следует учесть, что соотношение сторон матрицы составляет 3:4.

Если обозначить разрешение по горизонтали, вертикали, а также камеры в целом соответственно как Хг, Хв, Хк , то получим:

Хг=√Хк/0,75

Хв=0,75*Хг

Следующий момент, влияющий на детализацию изображения - расстояние до объекта видеонаблюдения (рис.3).

Объекты Н1 и Н2 отображаются на матрице одинаковым размером Нм, несмотря на то, что их реальные размеры различны. То есть, на каждый из них приходится одинаковое количество элементов матрицы. Соответственно, степень детализации объекта Н1 будет выше (рис.4).

Стоит заметить, что при организации системы видеонаблюдения практический интерес представляет именно детализация изображения, которая, как было показано, зависит не только от разрешения камеры.

Изменяя угол обзора камеры видеонаблюдения, который, кстати, зависит от фокусного расстояния объектива, можно получать нужную степень детализации объектов, находящихся на различном удалении от видеокамеры.

Существуют формулы, позволяющие произвести необходимые расчеты, соответствующие сводные таблицы, однако, для удобства можете воспользоваться онлайн калькуляторами для расчета угла обзора и фокусного расстояния видеокамеры.

Поскольку задачей данной статьи является изложение самых основ, касающихся разрешающей способности видеокамер, то внимание на том, что разрешения по горизонтали и вертикали различны не акцентировалось. В определенных ситуациях этот момент нужно учитывать, но для понимания сути вопроса, изложенного материала должно быть достаточно.


* * *


© 2014-2019 г.г. Все права защищены.
Материалы сайта имеют исключительно ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.