На каких глубинах плавает современная подводная лодка. Первое погружение в морские глубины, или чем опасен дайвинг

Подводное кораблестроение преследует несколько целей. Все они, так или иначе, связаны с уменьшением возможности обнаружения подлодки за счет увеличения расстояния между нею и водной поверхностью, а также некоторых других факторов. Конечно, военно-промышленный комплекс вообще особая область, цели которой зачастую сильно отличаются от стремлений обычного мирного человека. Однако в предлагаемой статье рассмотрим некоторые данные о том, какова глубина погружения подводных лодок, а также пределы, в которых варьируется эта величина.

Немного истории: батискаф

Речь в материале пойдет, конечно же, о боевых кораблях. Хотя исследования человеком морских просторов включают посещение им даже планетного максимума глубины — дна Марианской впадины, которое, как известно, находится более чем в 11 км от поверхности Мирового океана. Однако историческое погружение, состоявшееся еще в далеком 1960 году, было проведено в батискафе. Это аппарат, не обладающий плавучестью в полном смысле, так как он может лишь тонуть, а затем подниматься за счет ухищрений инженерного гения. В общем, при эксплуатации батискафа не идет речи о перемещении в горизонтальной плоскости на сколько-нибудь серьезные дистанции. Поэтому глубина погружения которые, как известно, могут преодолевать огромные расстояния, значительно меньше рекордной для батискафа, по крайней мере, пока.

Важнейшая характеристика

Говоря о рекордах в области освоения океанских просторов, не следует забывать и об истинном предназначении подлодок. Военные цели и боевой заряд, обычно располагающийся на таких кораблях, подразумевает не только высочайшую мобильность, необходимую для них. Кроме этого, они должны умело скрываться в идеально подходящих для этого водных толщах, всплывать в нужный момент и максимально быстро опускаться на необходимую для выживания после военной операции глубину. По сути, последнее и определяет уровень боеспособности корабля. Таким образом, максимальная глубина погружения подводной лодки является одной из важнейших ее характеристик.

Факторы увеличения

В связи с этим есть несколько соображений. Увеличение глубины позволяет улучшать маневренность подлодки в вертикальной плоскости, поскольку длина боевого корабля обычно составляет не менее нескольких десятков метров. Таким образом, если он находится в 50 метрах под водой, а его габариты в два раза больше, перемещение вниз или вверх чревато полной потерей маскировки.

Кроме того, в водных толщах имеется такое понятие, как «тепловые слои», которые сильно искажают гидролокационный сигнал. Если уходить ниже их, то подлодка становится практически «невидимой» для следящего оборудования надводных кораблей. Не говоря уже о том, что на больших глубинах такой аппарат намного сложнее уничтожить любым имеющимся на планете оружием.

Чем больше глубина погружения подводных лодок, тем прочнее должен быть корпус, способный выдерживать невероятные давления. Это, опять же, на руку общей обороноспособности корабля. Наконец, если предел глубины позволяет ложиться на океанское также повышает невидимость подлодки для любого локационного оборудования, имеющегося в распоряжении современных систем отслеживания.

Основная терминология

Существует две основных характеристики, показывающих способность подлодки к погружению. Первая — это так называемая рабочая глубина. В зарубежных источниках она также фигурирует как оперативная. Данная характеристика показывает, какова глубина погружения подводных лодок, на которую можно опускаться неограниченное количество раз за весь период эксплуатации. Например, американский «Трешер» нормально совершил 40 погружений за год в пределах данной величины, пока при очередной попытке ее превысить трагически не погиб вместе со всем экипажем в Атлантике. Вторая важнейшая характеристика — расчетная или разрушающая (в зарубежных источниках) глубина. Соответствует такой ее величине, на которой превышает прочность корпуса, вычисленную во время проектирования аппарата.

Тестовая глубина

Есть еще одна характеристика, о которой следует упомянуть в контексте. Это глубина погружения предельная согласно расчетам, нахождение ниже которой может вызывать разрушение самой обшивки, либо шпангоутов, либо другого внешнего оборудования. Она также называется «тестовой» в зарубежных источниках. Она не в коем случае не должна превышаться для конкретного аппарата.

Возвращаясь к «Трешеру»: при расчетном значении в 300 метров он пошел на тестовую глубину в 360 метров. К слову, в США на эту глубину подлодка отправляется сразу после спуска на воду с завода и, по сути, «обкатывается» на ней определенное время, прежде чем передается заказывающему ее ведомству. Завершим печальную историю «Трешера». Испытания на 360 метрах для него завершились трагически, и хотя это было вызвано не самой глубиной, а техническими неполадками с атомным двигателем субмарины, однако случайности, по всей видимости, не случайны.

Подлодка потеряла ход из-за остановки мотора, продувка балластных цистерн не дала результата, и аппарат пошел на дно. Согласно данным экспертов, разрушение корпуса субмарины произошло на глубине около 700 метров, так что, как видим, между тестовым значением и действительно разрушительным есть еще порядочная разница.

Средние цифры

С течением времени, естественно, значения глубин растут. Если субмарины Второй мировой были рассчитаны на значения в 100-150 метров, то последующие поколения повышали эти пределы. С изобретением возможности использования ядерного распада для создания двигателей глубина погружения атомных подводных лодок также увеличилась. В начале 60-х годов она уже составляла порядка 300-350 метров. Современные подлодки имеют пределы порядка 400-500 метров. Пока на этом фронте наблюдается явный застой, похоже, дело за будущими разработками, хотя следует упомянуть о неординарном проекте, созданном в Советском Союзе в 80-е годы.

Абсолютный рекорд

Речь идет о подводной лодке «Комсомолец», к сожалению, трагически затонувшей, однако ей принадлежит все еще непокоренная вершина в освоении морских глубин современными субмаринами. Этот уникальный проект пока не имеет аналогов во всем мире. Дело в том, что для изготовления ее корпуса был использован очень прочный, дорогой и чрезвычайно неудобный в обработке материал — титан. Максимальная глубина погружения подводной лодки в мире пока все еще принадлежит «Комсомольцу». Этот рекорд был установлен в 1985 году, когда советская субмарина достигла 1027 метров ниже поверхности моря.

К слову, рабочее значение для нее составляло 1000 м, а расчетное — 1250. В итоге «Комсомолец» затонул в 1989 году из-за сильного пожара, начавшегося на глубине около 300 метров. И хотя ему, в отличие от того же «Трешера», удалось всплыть, история все равно получилась очень трагической. Пожар настолько повредил подлодку, что она почти сразу пошла ко дну. Несколько человек погибли еще при пожаре, а около половины экипажа утонуло в ледяной воде, пока подоспевала помощь.

Заключение

Глубина погружения современных составляет 400-500 метров, максимальная обычно имеет несколько большие значения. Рекорд в 1027 метров, установленный «Комсомольцем», пока не под силу ни одной из имеющихся на вооружении всех стран субмарин. Слово за будущим.

Вряд ли кто-то станет спорить с тем, что одной из главных характеристик любой подлодки является малозаметность. Этот параметр находится в непосредственной зависимости от того, на какую глубину может погрузиться подводная лодка. Помимо того, что на глубине машину труднее заметить, ей проще нанести неожиданный удар по противнику.

Как погружается подлодка?

С тех пор, как люди начали строить первые субмарины, прошло много времени, а возможности таких аппаратов существенно выросли. Например, во времена Второй мировой войны субмарины плавали на глубине в 100-150 м. В наши дни этот показатель может увеличиваться до 3-5 раз.

Когда подлодка находится на поверхности воды, то она не сильно отличается от обыкновенного судна, за исключением внешнего вида. Начать погружение удается, когда в специальные цистерны начинает поступать вода, играющая роль балласта. Эти цистерны находятся между легкой и прочной обшивками конструкции.

Соответственно, для того, чтобы субмарина поднялась на поверхность, необходимо произвести обратный процесс, т.е. избавиться от балласта. Для опустошения цистерн применяется сильный поток сжатого воздуха.

Что влияет на глубину погружения?

Глубину погружения принято характеризовать параметрами рабочей и предельной глубин. Как нетрудно догадаться, в первом случае имеется в виду глубина, на которую субмарина может заходить без трудностей, причем это допустимо весь период эксплуатации. Предельной глубиной обозначается точка, погружение ниже которой может привести к тому, что корпус субмарины начнет разрушаться. Чаще всего, подводная лодка отправляется на предельную глубину сразу после того, как ее спустили на воду. Это делается для проверки надежности всех систем. Стоит также отметить, что показатель максимальной глубины индивидуален для разных типов субмарин.

Не обошлось и без рекордных достижений в этой сфере. Касательно максимальной глубины погружения, лучшее достижение принадлежит АПЛ «Комсомолец», которая в 85-м году прошлого века погрузилась до отметки в 1030 м. Через несколько лет эта субмарина из-за внезапного пожара затонула в акватории норвежского моря.

Перспективность отечественных подлодок

За последние несколько лет на вооружение ВМФ России поступило несколько современных субмарин. Можно выделить следующие АПЛ:

  • «Северодвинск» с рабочей и предельной глубинами в 520 и 600 м соответственно,
  • «Александр Невский» с рабочей и предельной глубинами в 400 и 480 м соответственно.

Стоит сказать, что в условиях современного мира показатель максимального погружения уже не является столь принципиальным. Куда важнее сейчас создать субмарины, издающие как можно меньший шум в процессе работы.

Погружением подводной лодки назы­вается переход ее из надводного положения в подвод­ное или изменение глубины погружения с меньшей на большую.

Переход подводной лодки из надводного положения в подводное производится заполнением цистерн главного балласта, а изменение глубины погружения с меньшей на большую, как правило, ходом и горизонтальными рулями.

Погружение подводной лодки в два этапа принято называть обычным погружением. Оно произво­дится:

При вывеске;

При дифферентовке в районах, стесненных для ма­неврирования в подводном положении;

С учебными целями, а также по усмотрению коман­дира подводной лодки.

При обычном погружении заполняются сначала конце­вые цистерны главного балласта, затем средней группы при незаполненной цистерне быстрого погружения.

Перед погружением на подводной лодке осушаются трюмы, вентилируются отсеки и аккумуляторная батарея, готовится к погружению мостик, а при подходе к точке погружения стопорится ход и продувается цистерна бы­строго погружения. Погружение предваряется командой командира пл «Все вниз. По местам стоять, к погруже­нию». Личный состав занимает места согласно расписанию по погружению, закрывает забортные отверстия и готовит системы пл для плавания под водой. Главный командный пункт переводится с мостика в центральный пост или в боевую рубку. Наблюдение за горизонтом ведется через перископ и с помощью радиотехнических средств. Затем заполняются цистерны главного балласта носовой и кор­мовой (концевых) групп, причем вентиляция кормовой группы открывается на 1-2 секунды раньше носовой, и подводная лодка переходит в позиционное положение.

В позиционном положении проверяется заполнение во­дой осушительной магистрали и незаряженных торпедных аппаратов, осматриваются отсеки для установления ка­чества герметизации прочного корпуса. Крен и дифферент подводной лодки приводятся к нулю.

После выполнения перечисленных действий заполня­ются цистерны главного балласта средней группы. Клапа­ны вентиляции этих цистерн закрываются на глубине 5-7 м. Если подводная лодка с началом заполнения сред­ней группы начнет быстро погружаться, следует немед­ленно закрыть клапаны вентиляции цистерн средней груп­пы, продуть «среднюю», пустить насос на откачивание воды из уравнительной цистерны за борт и всплыть в по­зиционное положение, после чего установить и устранить причину провала подводной лодки. Лишь после этого повторить погружение. Если с заполнением средней груп­пы подводная лодка не погружается, она считается «лег­кой». В этом случае погашение положительной плавуче­сти производится приемом воды из-за борта в уравни­тельную цистерну. С приходом подводной лодки на глу­бину не более перископной закрываются клапаны венти­ляции всех цистерн главного балласта.

Обычное погружение на ходу

Прибыв в точку погружения и перейдя на необходи­мый режим движения, командир подводной лодки коман­дует: «Все вниз. По местам стоять, к погружению». При исполнении этой команды осуществляются те же действия и в том же порядке, что и при погружении без хода. После команды «Заполнить среднюю» командир прика­зывает: «Погружаться на столько-то метров, дифферент столько-то градусов». При погружении на безопасную или большую глубину не рекомендуется создавать диф­ферент более 5-7°.

При погружении на ровном киле заполнение цистерн главного балласта будет более равномерным. При этом горизонтальные рули перекладываются «параллельно на погружение» таким образом, чтобы дифферент подводной лодки был равен нулю. Такое положение сохраняется до глубины примерно 5-7 м.

С приходом подводной лодки на указанную глубину можно создавать дифферент, заданный командиром.

Если лодка не погружается, следует принимать воду в уравнительную цистерну. При этом, как только глуби­номер покажет изменение глубины, прием воды приоста­навливается. Если после заполнения средней группы ци­стерн главного балласта подводная лодка начнет быстро погружаться, необходимо создать дифферент на корму, ходом и рулями удерживая ее от дальнейшего погруже­ния. Одновременно нужно откачивать воду из уравнитель­ной цистерны за борт. Если этого окажется недостаточно, следует частично продуть среднюю группу цистерн глав­ного балласта, откачать из уравнительной цистерны нуж­ное количество воды, а затем, сняв «пузырь» со «средней», продолжать погружение.

Срочное погружение

Срочное погружение выполняется командиром подвод­ной лодки или вахтенным офицером и, как правило, од­ной боевой сменой. Оно обеспечивает уход подводной лодки под воду в минимальное время.

По команде «Все вниз» личный состав, находящийся на мостике, быстро спускается в лодку. По сигналу «Срочное погружение» личный состав выполняет следую­щие действия:

Останавливает дизели, отключает носовые муфты сцепления, задраивает шахты подачи воздуха к дизелям и другие забортные отверстия, открывает клапаны урав­нивания давления цистерн главного балласта, в которых находится топливо, а также клапан вентиляции цистерны плавучести;

Задраивает верхний рубочный люк (командир пл или вахтенный офицер);

Дает ход электродвигателями;

Заполняет цистерны главного балласта;

Управляет горизонтальными рулями;

Продувает цистерну быстрого погружения и закры­вает ее кингстоны;

Закрывает клапаны вентиляции средней группы и цистерн главного балласта.

При срочном погружении средняя группа цистерн за­полняется после задраивания рубочного люка. Контроль­ный прибор станции сигнализации должен показывать, что рубочный люк, запоры шахты подачи воздуха к ди­зелям, судовой и батарейной вентиляции закрыты.

В начальный период погружения подводной лодки но­совые горизонтальные рули следует положить на погру­жение, а кормовые - на всплытие. В этом случае обе пары горизонтальных рулей создают топящие силы. Кор­мовые горизонтальные рули, создающие дифферентующий момент на корму, способствуют удержанию лодки на ровном киле, уравновешивая дифферентующий момент, появляющийся с заполнением цистерны быстрого погру­жения.

По достижении глубины, когда все цистерны главного балласта окажутся заполненными, кормовые рули следует переложить на погружение, создать дифферент до 10° на нос (в зависимости от проекта пл) и удерживать его в процессе погружения.

Если подводная лодка должна остаться на перископ­ной глубине, цистерну быстрого погружения продувают на глубине, равной половине перископной. При необходи­мости уйти на безопасную глубину цистерну быстрого по­гружения продувают на глубине не менее перископной. Клапаны вентиляции цистерн главного балласта закры­ваются сразу же после ухода подводной лодки под воду.

Как правило, с командой «Срочное погружение» дается приказание командиром пл (вахтенным офицером): «Погружаться на глубину столько-то метров с дифферен­том столько-то градусов». С подходом к заданной глу­бине дифферент отводится, и рулевой-горизонтальщик докладывает глубину погружения по глубиномеру.

При срочном погружении надо быть готовым произ­вести аварийное продувание концевых цистерн главного балласта, если дифферент, быстро нарастая, превысит допустимый. Продувание средней группы цистерн может потребоваться в случае потери плавучести при неверном расчете нагрузки подводной лодки или при запоздалом продувании цистерны быстрого погружения.

Погружение на предельную глубину

В подводном положении пл может находиться на глу­бинах: перископной (7-9 м), под РДП

Дышите глубже: человек спускается на глубину, недоступную атомным подводным лодкам.

Роман Фишман

Мы живем на планете воды, но земные океаны знаем хуже, чем некоторые космические тела. Больше половины поверхности Марса артографировано с разрешением около 20 м — и только 10−15% океанского дна изучены при разрешении хотя бы 100 м. На Луне побывало 12 человек, на дне Марианской впадины — трое, и все они не смели и носа высунуть из сверхпрочных батискафов.

Погружаемся

Главная сложность в освоении Мирового океана — это давление: на каждые 10 м глубины оно увеличивается еще на одну атмосферу. Когда счет доходит до тысяч метров и сотен атмосфер, меняется все. Жидкости текут иначе, необычно ведут себя газы… Аппараты, способные выдержать эти условия, остаются штучным продуктом, и даже самые современные субмарины на такое давление не рассчитаны. Предельная глубина погружения новейших АПЛ проекта 955 «Борей» составляет всего 480 м.


Водолазов, спускающихся на сотни метров, уважительно зовут акванавтами, сравнивая их с покорителями космоса. Но бездна морей по‑своему опаснее космического вакуума. Случись что, работающий на МКС экипаж сможет перейти в пристыкованный корабль и через несколько часов окажется на поверхности Земли. Водолазам этот путь закрыт: чтобы эвакуироваться с глубины, могут потребоваться недели. И срок этот не сократить ни при каких обстоятельствах.

Впрочем, на глубину существует и альтернативный путь. Вместо того чтобы создавать все более прочные корпуса, можно отправить туда… живых водолазов. Рекорд давления, перенесенного испытателями в лаборатории, почти вдвое превышает способности подлодок. Тут нет ничего невероятного: клетки всех живых организмов заполнены той же водой, которая свободно передает давление во всех направлениях.

Клетки не противостоят водному столбу, как твердые корпуса субмарин, они компенсируют внешнее давление внутренним. Недаром обитатели «черных курильщиков», включая круглых червей и креветок, прекрасно себя чувствуют на многокилометровой глубине океанского дна. Некоторые виды бактерий неплохо переносят даже тысячи атмосфер. Человек здесь не исключение — с той лишь разницей, что ему нужен воздух.

Под поверхностью

Кислород Дыхательные трубки из тростника были известны еще могиканам Фенимора Купера. Сегодня на смену полым стеблям растений пришли трубки из пластика, «анатомической формы» и с удобными загубниками. Однако эффективности им это не прибавило: мешают законы физики и биологии.


Уже на метровой глубине давление на грудную клетку поднимается до 1,1 атм — к самому воздуху прибавляется 0,1 атм водного столба. Дыхание здесь требует заметного усилия межреберных мышц, и справиться с этим могут только тренированные атлеты. При этом даже их сил хватит ненадолго и максимум на 4−5 м глубины, а новичкам тяжело дается дыхание и на полуметре. Вдобавок чем длиннее трубка, тем больше воздуха содержится в ней самой. «Рабочий» дыхательный объем легких составляет в среднем 500 мл, и после каждого выдоха часть отработанного воздуха остается в трубке. Каждый вдох приносит все меньше кислорода и все больше углекислого газа.

Чтобы доставлять свежий воздух, требуется принудительная вентиляция. Нагнетая газ под повышенным давлением, можно облегчить работу мускулам грудной клетки. Такой подход применяется уже не одно столетие. Ручные насосы известны водолазам с XVII века, а в середине XIX века английские строители, возводившие подводные фундаменты для опор мостов, уже подолгу трудились в атмосфере сжатого воздуха. Для работ использовались толстостенные, открытые снизу подводные камеры, в которых поддерживали высокое давление. То есть кессоны.

Глубже 10 м

Азот Во время работы в самих кессонах никаких проблем не возникало. Но вот при возвращении на поверхность у строителей часто развивались симптомы, которые французские физиологи Поль и Ваттель описали в 1854 году как On ne paie qu’en sortant — «расплата на выходе». Это мог быть сильный зуд кожи или головокружение, боли в суставах и мышцах. В самых тяжелых случаях развивались параличи, наступала потеря сознания, а затем и гибель.


Чтобы отправиться на глубину без каких-либо сложностей, связанных с экстремальным давлением, можно использовать сверхпрочные скафандры. Это чрезвычайно сложные системы, выдерживающие погружение на сотни метров и сохраняющие внутри комфортное давление в 1 атм. Правда, они весьма дороги: например, цена недавно представленного скафандра канадской фирмы Nuytco Research Ltd. EXOSUIT составляет около миллиона долларов.

Проблема в том, что количество растворенного в жидкости газа прямо зависит от давления над ней. Это касается и воздуха, который содержит около 21% кислорода и 78% азота (прочими газами — углекислым, неоном, гелием, метаном, водородом и т. д. — можно пренебречь: их содержание не превышает 1%). Если кислород быстро усваивается, то азот просто насыщает кровь и другие ткани: при повышении давления на 1 атм в организме растворяется дополнительно около 1 л азота.

При быстром снижении давления избыток газа начинает выделяться бурно, иногда вспениваясь, как вскрытая бутылка шампанского. Появляющиеся пузырьки могут физически деформировать ткани, закупоривать сосуды и лишать их снабжения кровью, приводя к самым разнообразным и часто тяжелым симптомам. По счастью, физиологи разобрались с этим механизмом довольно быстро, и уже в 1890-х годах декомпрессионную болезнь удавалось предотвратить, применяя постепенное и осторожное снижение давления до нормы — так, чтобы азот выходил из организма постепенно, а кровь и другие жидкости не «закипали».

В начале ХХ века английский исследователь Джон Холдейн составил детальные таблицы с рекомендациями по оптимальным режимам спуска и подъема, компрессии и декомпрессии. Экспериментируя с животными, а затем и с людьми — в том числе с самим собой и своими близкими, — Холдейн выяснил, что максимальная безопасная глубина, не требующая декомпрессии, составляет около 10 м, а при длительном погружении — и того меньше. Возвращение с глубины должно производиться поэтапно и не спеша, чтобы дать азоту время высвободиться, зато спускаться лучше довольно быстро, сокращая время поступления избыточного газа в ткани организма. Людям открылись новые пределы глубины.


Глубже 40 м

Гелий Борьба с глубиной напоминает гонку вооружений. Найдя способ преодолеть очередное препятствие, люди делали еще несколько шагов — и встречали новую преграду. Так, следом за кессонной болезнью открылась напасть, которую дайверы почти любовно зовут «азотной белочкой». Дело в том, что в гипербарических условиях этот инертный газ начинает действовать не хуже крепкого алкоголя. В 1940-х опьяняющий эффект азота изучал другой Джон Холдейн, сын «того самого». Опасные эксперименты отца его ничуть не смущали, и он продолжил суровые опыты на себе и коллегах. «У одного из наших испытуемых произошел разрыв легкого, — фиксировал ученый в журнале, — но сейчас он поправляется».

Несмотря на все исследования, механизм азотного опьянения детально не установлен — впрочем, то же можно сказать и о действии обычного алкоголя. И тот и другой нарушают нормальную передачу сигналов в синапсах нервных клеток, а возможно, даже меняют проницаемость клеточных мембран, превращая ионообменные процессы на поверхностях нейронов в полный хаос. Внешне то и другое проявляется тоже схожим образом. Водолаз, «словивший азотную белочку», теряет контроль над собой. Он может впасть в панику и перерезать шланги или, наоборот, увлечься пересказом анекдотов стае веселых акул.

Наркотическим действием обладают и другие инертные газы, причем чем тяжелее их молекулы, тем меньшее давление требуется для того, чтобы этот эффект проявился. Например, ксенон анестезирует и при обычных условиях, а более легкий аргон — только при нескольких атмосферах. Впрочем, эти проявления глубоко индивидуальны, и некоторые люди, погружаясь, ощущают азотное опьянение намного раньше других.


Избавиться от анестезирующего действия азота можно, снизив его поступление в организм. Так работают дыхательные смеси нитроксы, содержащие увеличенную (иногда до 36%) долю кислорода и, соответственно, пониженное количество азота. Еще заманчивее было бы перейти на чистый кислород. Ведь это позволило бы вчетверо уменьшить объем дыхательных баллонов или вчетверо увеличить время работы с ними. Однако кислород — элемент активный, и при длительном вдыхании — токсичный, особенно под давлением.

Чистый кислород вызывает опьянение и эйфорию, ведет к повреждению мембран в клетках дыхательных путей. При этом нехватка свободного (восстановленного) гемоглобина затрудняет выведение углекислого газа, приводит к гиперкапнии и метаболическому ацидозу, запуская физиологические реакции гипоксии. Человек задыхается, несмотря на то что кислорода его организму вполне достаточно. Как установил тот же Холдейн-младший, уже при давлении в 7 атм дышать чистым кислородом можно не дольше нескольких минут, после чего начинаются нарушения дыхания, конвульсии — все то, что на дайверском сленге называется коротким словом «блэкаут».

Жидкостное дыхание

Пока еще полуфантастический подход к покорению глубины состоит в использовании веществ, способных взять на себя доставку газов вместо воздуха — например, заменителя плазмы крови перфторана. В теории, легкие можно заполнить этой голубоватой жидкостью и, насыщая кислородом, прокачивать ее насосами, обеспечивая дыхание вообще без газовой смеси. Впрочем, этот метод остается глубоко экспериментальным, многие специалисты считают его и вовсе тупиковым, а, например, в США применение перфторана официально запрещено.

Поэтому парциальное давление кислорода при дыхании на глубине поддерживается даже ниже обычного, а азот заменяют на безопасный и не вызывающий эйфории газ. Лучше других подошел бы легкий водород, если б не его взрывоопасность в смеси с кислородом. В итоге водород используется редко, а обычным заменителем азота в смеси стал второй по легкости газ, гелий. На его основе производят кислородно-гелиевые или кислородно-гелиево-азотные дыхательные смеси — гелиоксы и тримиксы.

Глубже 80 м

Сложные смеси Здесь стоит сказать, что компрессия и декомпрессия при давлениях в десятки и сотни атмосфер затягивается надолго. Настолько, что делает работу промышленных водолазов — например, при обслуживании морских нефтедобывающих платформ — малоэффективной. Время, проведенное на глубине, становится куда короче, чем долгие спуски и подъемы. Уже полчаса на 60 м выливаются в более чем часовую декомпрессию. После получаса на 160 м для возвращения понадобится больше 25 часов — а ведь водолазам приходится спускаться и ниже.

Поэтому уже несколько десятилетий для этих целей используют глубоководные барокамеры. Люди живут в них порой целыми неделями, работая посменно и совершая экскурсии наружу через шлюзовой отсек: давление дыхательной смеси в «жилище» поддерживается равным давлению водной среды вокруг. И хотя декомпрессия при подъеме со 100 м занимает около четырех суток, а с 300 м — больше недели, приличный срок работы на глубине делает эти потери времени вполне оправданными.


Методы длительного пребывания в среде с повышенным давлением прорабатывались с середины ХХ века. Большие гипербарические комплексы позволили создавать нужное давление в лабораторных условиях, и отважные испытатели того времени устанавливали один рекорд за другим, постепенно переходя и в море. В 1962 году Роберт Стенюи провел 26 часов на глубине 61 м, став первым акванавтом, а тремя годами позже шестеро французов, дыша тримиксом, прожили на глубине 100 м почти три недели.

Здесь начались новые проблемы, связанные с длительным пребыванием людей в изоляции и в изнурительно некомфортной обстановке. Из-за высокой теплопроводности гелия водолазы теряют тепло с каждым выдохом газовой смеси, и в их «доме» приходится поддерживать стабильно жаркую атмосферу — около 30 °C, а вода создает высокую влажность. Кроме того, низкая плотность гелия меняет тембр голоса, серьезно затрудняя общение. Но даже все эти трудности вместе взятые не поставили бы предел нашим приключениям в гипербарическом мире. Есть ограничения и поважнее.

Глубже 600 м

Предел В лабораторных экспериментах отдельные нейроны, растущие «в пробирке», плохо переносят экстремально высокое давление, демонстрируя беспорядочную гипервозбудимость. Похоже, что при этом заметно меняются свойства липидов клеточных мембран, так что противостоять этим эффектам невозможно. Результат можно наблюдать и в нервной системе человека под огромным давлением. Он начинает то и дело «отключаться», впадая в кратковременные периоды сна или ступора. Восприятие затрудняется, тело охватывает тремор, начинается паника: развивается нервный синдром высокого давления (НСВД), обусловленный самой физиологией нейронов.


Помимо легких, в организме есть и другие полости, содержащие воздух. Но они сообщаются с окружающей средой очень тонкими каналами, и давление в них выравнивается далеко не моментально. Например, полости среднего уха соединяются с носоглоткой лишь узкой евстахиевой трубой, которая к тому же часто забивается слизью. Связанные с этим неудобства знакомы многим пассажирам самолетов, которым приходится, плотно закрыв нос и рот, резко выдохнуть, уравнивая давление уха и внешней среды. Водолазы тоже применяют такое «продувание», а при насморке стараются вовсе не погружаться.

Добавление к кислородно-гелиевой смеси небольших (до 9%) количеств азота позволяет несколько ослабить эти эффекты. Поэтому рекордные погружения на гелиоксе достигают планки 200−250 м, а на азотсодержащем тримиксе — около 450 м в открытом море и 600 м в компрессионной камере. Законодателями в этой области стали — и до сих пор остаются — французские акванавты. Чередование воздуха, сложных дыхательных смесей, хитрых режимов погружения и декомпрессии еще в 1970-х позволило водолазам преодолеть планку в 700 м глубины, а созданную учениками Жака Кусто компанию COMEX сделало мировым лидером в водолазном обслуживании морских нефтедобывающих платформ. Детали этих операций остаются военной и коммерческой тайной, поэтому исследователи других стран пытаются догнать французов, двигаясь своими путями.

Пытаясь опуститься глубже, советские физиологи изучали возможность замены гелия более тяжелыми газами, например неоном. Эксперименты по имитации погружения на 400 м в кислородно-неоновой атмосфере проводились в гипербарическом комплексе московского Института медико-биологических проблем (ИМБП) РАН и в секретном «подводном» НИИ-40 Министерства обороны, а также в НИИ Океанологии им. Ширшова. Однако тяжесть неона продемонстрировала свою обратную сторону.


Можно подсчитать, что уже при давлении 35 атм плотность кислородно-неоновой смеси равна плотности кислородно-гелиевой примерно при 150 атм. А дальше — больше: наши воздухоносные пути просто не приспособлены для «прокачивания» такой густой среды. Испытатели ИМБП сообщали, что, когда легкие и бронхи работают со столь плотной смесью, возникает странное и тяжелое ощущение, «будто ты не дышишь, а пьешь воздух». В бодрствующем состоянии опытные водолазы еще способны с этим справиться, но в периоды сна — а на такую глубину не добраться, не потратив долгие дни на спуск и подъем — они то и дело просыпаются от панического ощущения удушья. И хотя военным акванавтам из НИИ-40 удалось достичь 450-метровой планки и получить заслуженные медали Героев Советского Союза, принципиально это вопроса не решило.

Новые рекорды погружения еще могут быть поставлены, но мы, видимо, подобрались к последней границе. Невыносимая плотность дыхательной смеси, с одной стороны, и нервный синдром высоких давлений — с другой, видимо, ставят окончательный предел путешествиям человека под экстремальным давлением.

Наш эксперт - кандидат медицинских наук, заведующий отделением ГБО РНЦХ РАМН, заведующий кафедрой ГБО РМАПО МЗ РФ Владимир Родионов .

Кто на новенького?

Зачастую решение нырнуть на глубину к туристам приходит спонтанно. Например, когда они оказываются в городе, чтобы купить сувениры, и к ним подходят улыбчивые продавцы подводных экскурсий и предлагают осуществить незабываемое путешествие в морские глубины по смешным ценам. Однако покупать сертификат на погружение в случайной экскурсионной лавочке - большая ошибка. Нормальные дайвинг-центры (которые относятся к наиболее известным дайверским ассоциациям - PADI, PDA, CMAS) с такими посредниками не связываются. Низкая цена экскурсии тоже должна насторожить. Третий момент - при заключении договора требуется заполнить специальную анкету, позволяющую выяснить, нет ли у человека каких-то заболеваний, при которых погружение может быть опасным (в первую очередь это касается всех острых недугов и большинства тяжелых хронических заболеваний, особенно легочных и сердечно-сосудистых патологий, а также врожденных пороков сердца).

Первое погружение по всем правилам должно проходить в так называемой «закрытой» воде: бассейне или бухте, а не в море («открытой» воде). Также есть четкое правило безопасности для новичков: максимум два клиента на одного инструктора. На деле же все зачастую происходит совсем не так: туристов сразу вывозят в море, при этом бот бывает переполнен, не редкость, когда на 10 неопытных дайверов - всего 1-2 инструктора.

Не зная броду, не суйся в воду

Погружаться в первый раз разрешено на глубину не более 10-12 метров, поэтому места для дайвинга в нормальных центрах выбирают очень тщательно и так, чтобы там не было никаких подводных течений. У новичков при погружении на глубину больше 40 метров частенько проявляется наркотическое действие азота (так называемое «глубинное опьянение»). Возникшая эйфория часто толкает их на неадекватное поведение и, в частности, заставляет всплывать резко, без остановки. А делать этого нельзя ни в коем случае.

При всплытии даже с небольшой глубины важно не превышать скорость подъема 10-18 м в минуту. Если нарушить режим декомпрессии (то есть всплытия), может развиться декомпрессионная (или кессонная) болезнь. Суть ее вот в чем. По мере погружения в кровь дайвера проникает азот и растворяется там. А при быстром всплытии (под большим давлением и при значительном потреблении воздуха) этот газ не успевает выводиться из организма. В итоге в крови и тканях образуются пузырьки, разрушающе действующие на организм. При легкой степени кессонной болезни чаще всего возникают боли в суставах и мышцах, чувство тяжести в сердце, повышенной усталости. При тяжелых формах возможны поражения легочной ткани, параличи и другие неврологические нарушения, вплоть до летального исхода.

Виноваты французы
Кессонная болезнь называется так по аналогии с изобретением французского ученого Триже, который в 1839 году запатентовал кессон (ящик) для строительства опор мостов. С этого времени люди смогли относительно долго находиться в условиях повышенного давления. Сразу после этого изобретения множество кессонных рабочих умирали от декомпрессионной болезни. Но этот недуг был известен и раньше, еще задолго до изобретения кессона и скафандра, правда, его последствия были менее тяжелыми, так как люди без специальной техники не могли очень долго находиться под водой. Но тем не менее с давних пор японские ныряльщицы ама страдали заболеванием таравана (с 30 лет несчастные женщины отмечали у себя шаткость походки, тремор рук, нарушение памяти). Недуг связывают с гипоксией и образованием газовых пузырьков в центральной нервной системе при систематических ныряниях.

Интенсивность газообразования зависит не только от режима всплытия, но и от индивидуальной устойчивости человека к декомпрессионной болезни. Риск развития недуга прямо пропорционален времени, проведенному под водой и на глубине. Так, при 6‑часовом пребывании на глубине 7-8 м и быстром всплытии заболевают 5% людей; с 16 м - каждый второй; с глубины 24 м - практически каждый человек.

И молимся, чтобы страховка не подвела

Чтобы погружение было успешным, дайвер должен не только заранее продумать выбор режима всплытия (и точно соблюдать его под водой), но и быть на тот момент абсолютно здоровым, отдохнувшим. Также он не должен курить и принимать алкоголь и лекарства (особенно транквилизаторы) ни до, ни после всплытия. Первое время надо также избегать тяжелой физической нагрузки - например, не стоит идти вечером заниматься в тренажерный зал.

Также опасно летать самолетом ранее чем через сутки после погружения (и через 72 часа после многократных погружений в течение одного дня). Это усугубляет развитие декомпрессионной болезни.

На всякий случай нужно узнать, где находится ближайшая рекомпрессионная барокамера, которая необходима для лечения кессонной болезни. Но поскольку 1 час работы этой установки стоит от $700 до 2500, а при тяжелых формах болезни может понадобиться непрерывное лечение в течение нескольких суток, то оптимальный выход для человека, планирующего занятия дайвингом, - приобрести специальную медицинскую страховку. На срок до 20 дней ее стоимость будет около 30 евро, а на год она обойдется примерно в сотню евро.

Дышите глубже!

Если у пострадавшего развилась кессонная болезнь, лучше приступать к лечению как можно раньше, а не ждать до приезда на родину. Тем более что специальных рекомпрессионных барокамер, в которых можно устанавливать особый режим, в обычных российских медицинских учреждениях сегодня, к сожалению, нет. Последний раз такая барокамера работала в РНЦХ РАМН в 90‑х годах, но в связи с большой дороговизной ее использования она уже не функционирует.

Поэтому такие больные могут лечиться только в кислородных барокамерах. Метод гипербарической оксигенотерапии (ГБО) - не самый эффективный в таком случае, но это лучше, чем ничего.